Skip to main content
Log in

Numerical Simulation of the Modulation Transfer Function in HgCdTe Detector Arrays

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we develop a method for simulating the modulation transfer function (MTF) of infrared detector arrays, which is based on numerical evaluation of the detector physics. The finite-difference time-domain and finite element methods are used to solve the electromagnetic and electrical equations for the device, respectively. We show how the total MTF can be deconvolved to examine the effects of specific physical processes. We introduce the MTF area difference and use it to quantify the effectiveness of several crosstalk mitigation techniques in improving the system MTF. We then apply our simulation methods to two-thirds generation mercury cadmium telluride (HgCdTe) detector architectures. The methodology is general, can be implemented with commercially available software, has experimentally realizable analogs, and is extendable to other material systems and device designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bercier, J.L. Dessus, A. Manissadjian, and P. Tribolet, Proc. SPIE 6940, 69400I–1 (2008).

    Article  Google Scholar 

  2. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).

    Article  Google Scholar 

  3. C.A. Keasler and E. Bellotti, J. Electron. Mater. 40, 1795 (2011).

    Article  Google Scholar 

  4. B. Pinkie and E. Bellotti, J. Electron. Mater. 42, 3089 (2013).

    Google Scholar 

  5. W.E. Tennant, J.M. Arias and J. Bajaj, Proc. SPIE 7298, 72982V–1 (2009).

    Article  Google Scholar 

  6. M. Carmody, J.G. Pasko, D. Edwall, R. Bailey, J. Arias, S. Cabelli, J. Bajaj, L.A. Almeida, J.H. Dinan, M. Groenert, A.J. Stoltz, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 34, 832 (2005).

    Article  Google Scholar 

  7. M. Carmody, J.G. Pasko, D. Edwall, R. Bailey, J. Arias, M. Groenert, L.A. Almeida, J.H. Dinan, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 35, 1417 (2006).

    Article  Google Scholar 

  8. E.P.G. Smith, L.T. Pham, G.M. Venzor, E.M. Norton, M.D. Newton, P.M. Goetz, V.K. Randall, A.M. Gallagher, G.K. Pierce, E.A. Patten, R.A. Coussa, K. Kosai, W.A. Radford, L.M. Giegerich, J.M. Edwards, S.M. Johnson, S.T. Baur, J.A. Roth, B. Nosho, T.J. De Lyon, J.E. Jensen, and R.E. Longshore, J. Electron. Mater. 33, 509 (2004).

    Article  Google Scholar 

  9. W.A. Radford, E.A. Patten, D.F. King, G.K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E.P. Smith, R. Graham, S.M. Johnson, J. Roth, B. Nosho, and J. Jensen, Proc. SPIE 5738, 331 (2005).

    Google Scholar 

  10. E.P.G. Smith, R.E. Bornfreund, I. Kasai, L.T. Pham, E.A. Patten, J.M. Peterson, J.A. Roth, B.Z. Nosho, T.J. De Lyon, J.E. Jensen, J.W. Bangs, S.M. Johnson, and W.A. Radford, Proc. SPIE 6127, 61271F–1 (2006).

    Google Scholar 

  11. J.G.A. Wehner, E.P.G. Smith, W. Radford, and C.L. Mears, J. Electron. Mater. 41, 2925 (2012).

    Article  Google Scholar 

  12. P.S. Wijewarnasuriya, M. Boukerche, and J.P. Faurie, J.␣Appl. Phys. 67, 859 (1990).

    Article  Google Scholar 

  13. B.D. MacLeod and D.S. Hobbs, Proc. SPIE 6940, 69400Y–1 (2008).

    Article  Google Scholar 

  14. J. Schuster and E. Bellotti, Appl. Phys. Lett. 101, 261118 (2012).

    Article  Google Scholar 

  15. L.G. Hipwood, C.L. Jones, D. Walker, C.J. Shaw, P. Abbott, R.A. Catchpole, M. Ordish, C.D. Maxey, H.W. Lau, P. Knowles, and M.C. Wilson, Proc. SPIE 6542, 654201–1 (2007).

    Article  Google Scholar 

  16. P. Abbott, L. Pillans, P. Knowles, and R.K. McEwen, Proc. SPIE 7660, 766035–1 (2010).

    Article  Google Scholar 

  17. I. Baker, C. Maxey, L. Hipwood, H. Weller, and P. Thorne, Proc. SPIE 8542, 85421A–1 (2012).

    Article  Google Scholar 

  18. J. Tunnicliffe, S.J.C. Irvine, O.D. Dosser, and J.B. Mullin, J.␣Cryst. Growth 68, 245 (1984).

    Article  Google Scholar 

  19. D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).

    Article  Google Scholar 

  20. J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Sel. Top. Quantum Electron. 19, 3800415 (2013).

    Article  Google Scholar 

  21. K.S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).

    Article  Google Scholar 

  22. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Norwood, MA: Artech House, 2005)

    Google Scholar 

  23. A. Taflove and K.R. Umashankar, Electromagnetics 10, 105 (2007).

    Article  Google Scholar 

  24. A. Bayliss, C.I. Goldstein, and E. Turkel, J. Comput. Phys. 59, 396 (1985).

    Article  Google Scholar 

  25. J.A. Roden and S.D. Gedney, Microw. Opt. Technol. Lett. 27, 334 (2000).

    Article  Google Scholar 

  26. Sentaurus Device Electromagnetic Wave Solver User Guide (Synopsys, Version G-2012.06, June 2012).

  27. R.E. Bank, D.J. Rose, and W. Fichtner, IEEE Trans. Electron. Dev. 30, 1031 (1983).

    Article  Google Scholar 

  28. J.J. Barnes and R.J. Lomax, IEEE Trans. Electron. Dev. 24, 1082 (1977).

    Article  Google Scholar 

  29. C.M. Snowden, Rep. Prog. Phys. 48, 223 (1985).

    Article  Google Scholar 

  30. E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).

    Article  Google Scholar 

  31. G.D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (Bellingham, WA: SPIE, 2001)

    Book  Google Scholar 

  32. G.C. Holst, Testing and Evaluation of Infrared Imaging Systems, 3rd edn. (Bellingham, WA: SPIE, 2001)

    Google Scholar 

  33. J.D. Gaskill, Linear Systems, Fourier Transforms, and Optics (New York: Wiley, 1978)

    Google Scholar 

  34. L.C. Ma and R. Mittra, IEEE Antennas Prop. (2007). doi:10.1109/APS.2007.4395832

    Google Scholar 

  35. S.K. Park, R. Schowengerdt, and M.A. Kaczynski, Appl. Opt. 23, 2572 (1984).

    Article  Google Scholar 

  36. B. Pinkie, J. Schuster, and E. Bellotti, Opt. Lett. 38, 2546 (2013).

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the U.S. Army Research Laboratory through the Collaborative Research Alliance (CRA) for MultiScale multidisciplinary Modeling of Electronic materials (MSME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Pinkie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinkie, B., Bellotti, E. Numerical Simulation of the Modulation Transfer Function in HgCdTe Detector Arrays. J. Electron. Mater. 43, 2864–2873 (2014). https://doi.org/10.1007/s11664-014-3134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3134-1

Keywords

Navigation