Skip to main content
Log in

Numerical Simulation on the Motion Behavior of Micro-inclusions at the Steel–Slag Interface

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The volume of fluid (VOF) method coupled with an overset mesh is used to simulate the dynamic motion of particles passing through the steel–slag interface. The results show that the solid inclusion particles with a diameter of 10 μm will sink first and then rise in a short time with a wide range of interface deformation when they approach the interface, and the motion state is extremely unstable. The liquid inclusions under the same conditions are also accompanied by unstable motion, but the raised meniscus will play a role in accelerating the upward movement. Increasing the terminal velocity of particles, improving the wettability of particles in molten steel, and modifying solid inclusions into liquid inclusions can reduce the oscillation amplitude during particle movement, which is conducive to the stability of particles at the liquid–liquid interface. The viscosity of slag has little effect on the detachment motion of small particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.L.V. da Costa e Silva: J Mater. Res. Technol., 2018, vol. 7, pp. 283–99. https://doi.org/10.1016/j.jmrt.2018.04.003.

    Article  CAS  Google Scholar 

  2. C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, and X.G. Li: Metall. Trans. B, 2016, vol. 47B, pp. 1882–92. https://doi.org/10.1007/s11663-016-0605-1.

    Article  CAS  Google Scholar 

  3. Y.L. Zhou, Z.Y. Deng, and M.Y. Zhu: Chin. J. Process. Eng., 2018, vol. 18, pp. 96–102. https://doi.org/10.12034/j.issn.1009-606X.217237.

    Article  CAS  Google Scholar 

  4. W. Liu, S.F. Yang, J.S. Li, F. Wang, L.B. Zhu, and M.L. Free: Metall. Trans. B, 2019, vol. 50, pp. 1542–46. https://doi.org/10.1007/s11663-019-01580-6.

    Article  CAS  Google Scholar 

  5. J.Q. Chao, Y. Li, W.M. Lin, J.L. Che, F. Zhou, Y.F. Tan, D.L. Li, J. Dang, and C. Chen: Crystals, 2023, vol. 13, pp. 202–33. https://doi.org/10.3390/cryst13020202.

    Article  CAS  Google Scholar 

  6. W. Liu, J. Liu, H.X. Zhao, S.F. Yang, and J.S. Li: Metall. Trans. B, 2021, vol. 52, pp. 2430–40. https://doi.org/10.1007/s11663-021-02203-9.

    Article  CAS  Google Scholar 

  7. Y.L. Zhu, H.N. Cui, T. Li, M. Tan, G.Z. Tang, Z.Y. Xin, and T.T. Xiao: Metall. Trans. B, 2023, vol. 54, pp. 101–14. https://doi.org/10.1007/s11663-022-02673-5.

    Article  CAS  Google Scholar 

  8. K. Nakajima and K. Okamura: Proc. 4th Int. Conf. Molten Slags Fluxes, ISIJ, Tokyo, 1992, p. 505.

  9. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597–1606. https://doi.org/10.2355/isijinternational.45.1597.

    Article  CAS  Google Scholar 

  10. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838–47. https://doi.org/10.2355/isijinternational.45.1838.

    Article  CAS  Google Scholar 

  11. S.F. Yang, W. Liu, and J.S. Li: JOM, 2015, vol. 67, pp. 2993–3001. https://doi.org/10.1007/s11837-015-1642-y.

    Article  Google Scholar 

  12. M. Valdez, G.S. Shannon, and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450–57. https://doi.org/10.2355/isijinternational.46.450.

    Article  CAS  Google Scholar 

  13. G. Shannon, L. White, and S. Sridhar: Mater. Sci. Eng. A, 2008, vol. 495, pp. 310–15. https://doi.org/10.1016/j.msea.2007.09.087.

    Article  CAS  Google Scholar 

  14. C.J. Xuan, E.S. Persson, R. Sevastopolev, and M. Nzotta: Metall. Trans. B, 2019, vol. 50, pp. 1957–73. https://doi.org/10.1007/s11663-019-01568-2.

    Article  CAS  Google Scholar 

  15. J.X. Zhao, H.Y. Zhu, L.G. Luo, J. Chen, and Z.H. Zheng: Ironmak. Steelmak., 2023, https://doi.org/10.1080/03019233.2023.2266264.

    Article  Google Scholar 

  16. X.M. Zhang, S. Pirker, and M. Saeedipour: Exp. Comput. Multiph. Flow, 2023, vol. 5, pp. 178–91. https://doi.org/10.1007/s42757-021-0130-6.

    Article  Google Scholar 

  17. X.M. Zhang, S. Pirker, and M. Saeedipour: Steel Res. Int., 2023, vol. 94, p. 2200842. https://doi.org/10.1002/srin.202200842.

    Article  CAS  Google Scholar 

  18. G.N. Shannon and S. Sridhar: High Temp. Mater. Process., 2005, vol. 24, pp. 111–24. https://doi.org/10.1515/HTMP.2005.24.2.111.

    Article  CAS  Google Scholar 

  19. I. Gudavadze and E.-L. Florin: Colloids Surf. A, 2022, vol. 636, p. 128176. https://doi.org/10.1016/j.colsurfa.2021.128176.

    Article  CAS  Google Scholar 

  20. Y.L. Zhou, Z.Y. Deng, and M.Y. Zhu: Chin. J. Process. Eng., 2022, vol. 22, pp. 222–31. https://doi.org/10.12034/j.issn.1009-606X.221013.

    Article  CAS  Google Scholar 

  21. A.V. Rapacchietta, A.W. Neumann, and S.N. Omenyi: J. Colloid Interface Sci., 1977, vol. 59, pp. 541–54. https://doi.org/10.1016/0021-9797(77)90050-9.

    Article  Google Scholar 

  22. A.V. Rapacchietta and A.W. Neumann: J. Colloid Interface Sci., 1977, vol. 59, pp. 555–67. https://doi.org/10.1016/0021-9797(77)90051-0.

    Article  Google Scholar 

  23. W. Liu, S.F. Yang, and J.S. Li: Metall. Trans. B, 2020, vol. 51, pp. 422–25. https://doi.org/10.1007/s11663-020-01770-7.

    Article  CAS  Google Scholar 

  24. W.S. Wang, H.Y. Zhu, Y. Han, J.L. Li, and Z.L. Xue: Ironmak. Steelmak., 2021, vol. 48, pp. 1038–47. https://doi.org/10.1080/03019233.2021.1909993.

    Article  CAS  Google Scholar 

  25. J.X. Zhao, H.Y. Zhu, L.Q. Wang, M.M. Song, J.L. Li, and Z.L. Xue: Ironmak. Steelmak., 2022, vol. 49, pp. 302–10. https://doi.org/10.1080/03019233.2021.1993695.

    Article  CAS  Google Scholar 

  26. U. Karr, R. Schuller, M. Fitzka, B. Schonbauer, D. Tran, B. Pennings, and H. Mayer: J. Mater. Sci., 2017, vol. 52, pp. 5954–67. https://doi.org/10.1007/s10853-017-0831-1.

    Article  CAS  Google Scholar 

  27. N. Ånmark, A. Karasev, and P.G. Jönsson: Materials, 2015, vol. 8, pp. 751–83. https://doi.org/10.3390/ma8020751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. B. Li, H.B. Yin, C.Q. Zhou, and F. Tsukihashi: ISIJ Int., 2008, vol. 48, pp. 1704–11. https://doi.org/10.2355/isijinternational.48.1704.

    Article  CAS  Google Scholar 

  29. L. Li, B.K. Li, and Z.Q. Liu: ISIJ Int., 2017, vol. 57, pp. 1980–89. https://doi.org/10.2355/isijinternational.ISIJINT-2017-069.

    Article  CAS  Google Scholar 

  30. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335–54. https://doi.org/10.1016/0021-9991(92)90240-Y.

    Article  CAS  Google Scholar 

  31. W.T. Lou and M.Y. Zhu: Metall. Trans. B, 2013, vol. 44, pp. 1251–63. https://doi.org/10.1007/s11663-013-9897-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 52074199 and 52374341.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangyu Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhu, H., Chen, J. et al. Numerical Simulation on the Motion Behavior of Micro-inclusions at the Steel–Slag Interface. Metall Mater Trans B 55, 1700–1711 (2024). https://doi.org/10.1007/s11663-024-03060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03060-y

Navigation