Skip to main content
Log in

In Situ Observation of the Dissolution, Collision, and Aggregation Behavior of Nitride Inclusions in GH4169 Nickel-Based Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the dissolution, collision, aggregation, and separation behaviors of nitride inclusions at the melt interface of GH4169 nickel-based superalloy were investigated via thermodynamic calculations combined with in situ observation via high-temperature confocal laser scanning microscope (CLSM). The results showed that the nitride inclusions were able to dissolve completely during the alloy melting process, and boundary layer diffusion was the limiting factor for dissolution. Nitride inclusions from the remelting process were reprecipitated during solidification. As the melt temperature increased, the degree of dissolution of the inclusions increased, and the dissolution rate of the inclusions increased. Second, the results of in situ observation by CLSM showed that nitride inclusions were more likely to aggregate with oxide inclusions, that separation may still occur between nitride inclusions after aggregation. The attraction of nitride–oxide inclusions was greater than that of nitride–nitride inclusions. The ability of the inclusions in the collision zone to aggregate together in contact depends on the interaction forces between the inclusions. The calculation results showed that the cavity bridge force was much greater than the capillary force and van der Waals force, which were the main forces leading to aggregation between the inclusions. Once a stable cavity bridge was formed between the inclusions, the aggregated inclusions no longer separated. In contrast, if cavity bridges formed between inclusions were substable, then fluctuations in the alloy melt would cause the substable structure to rupture, leading to the separation of inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. T.A. Ivanoff, T.J. Watt, and E.M. Taleff: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 700–15.

    Article  ADS  Google Scholar 

  2. J.H. Du, X.D. Lv, J.X. Dong, W.R. Sun, Z.N. Bi, G.P. Zhao, Q. Deng, C.Y. Cui, H.P. Ma, and B.J. Zhang: Acta Metall. Sin., 2019, vol. 55, pp. 1115–32.

    CAS  Google Scholar 

  3. K.S. Chan: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1148–62.

    Article  ADS  Google Scholar 

  4. J. Jiang, J. Yang, T. Zhang, J. Zou, Y. Wang, F.P.E. Dunne, and T.B. Britton: Acta Mater., 2016, vol. 117, pp. 333–44.

    Article  CAS  ADS  Google Scholar 

  5. G.M. Owolabi and H.A. Whitworth: J. Mater. Sci. Technol., 2014, vol. 30, pp. 203–12.

    Article  Google Scholar 

  6. X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1596–1607.

    Article  ADS  Google Scholar 

  7. J. Wang, L.Z. Wang, J.Q. Li, C.Y. Chen, S.F. Yang, and X. Li: J. Alloys Compd., 2022, vol. 906, p. 164281.

    Article  CAS  Google Scholar 

  8. L. Yang and G.G. Cheng: Int. J. Miner. Metall. Mater. B, 2017, vol. 24, pp. 869–75.

    Article  CAS  Google Scholar 

  9. X.Y. Gao, L. Zhang, Y.F. Luan, X.W. Chen, and X.H. Qu: JOM, 2020, vol. 72, pp. 3247–55.

    Article  CAS  ADS  Google Scholar 

  10. H.B. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.

    Article  CAS  Google Scholar 

  11. K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 629–41.

    Article  CAS  Google Scholar 

  12. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Mater. Sci. Eng. A, 2008, vol. 495, pp. 316–19.

    Article  Google Scholar 

  13. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 79–85.

    Article  CAS  ADS  Google Scholar 

  14. C.J. Xuan, A.V. Karasev, P.G. Jönsson, and K. Nakajima: Steel Res. INT., 2017, vol. 88, pp. 132–41.

    Article  Google Scholar 

  15. K. Sasai: ISIJ Int., 2015, vol. 54, pp. 2780–89.

    Article  Google Scholar 

  16. K. Sasai: ISIJ Int., 2016, vol. 56, pp. 1013–22.

    Article  CAS  Google Scholar 

  17. Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3137–50.

    Article  ADS  Google Scholar 

  18. K. Sasai: ISIJ Int., 2020, vol. 60, pp. 409–18.

    Article  CAS  Google Scholar 

  19. W.Z. Mu and C.J. Xuan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2694–2705.

    Article  ADS  Google Scholar 

  20. Y.T. Li, L.Z. Wang, J.Q. Li, S.F. Yang, C.Y. Chen, C.G. Li, and X. Li: ISIJ Int., 2020, vol. 61, pp. 753–62.

    Article  Google Scholar 

  21. J.X. Chen: Manual of Chart and Data in Common Use of Steel Making, 2nd ed. Metallurgical Industry Press, Beijing, 2010, pp. 657–846.

    Google Scholar 

  22. B. Ozturk, R. Matway, and R.J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 563–67.

    Article  CAS  ADS  Google Scholar 

  23. E.B. Chen, S.J. Wang, Y.C. Dong, B.G. Wu, and Y. Zhou: J. Iron. Steel Res. Int., 2007, vol. 14, pp. 21–24.

    Article  Google Scholar 

  24. X.L. Guo, J.B. Yu, X.F. Li, Y. Hou, and Z.M. Ren: Ironmak. Steelmak., 2018, vol. 45(3), pp. 215–23.

    Article  CAS  Google Scholar 

  25. R.F. Abdulrahman and A. Hendry: Metall. Mater. Trans. B, 2001, vol. 32(6), pp. 1103–12.

    Article  Google Scholar 

  26. T. Hong and T. Debroy: Ironmak. Steelmak., 2013, vol. 28, pp. 450–54.

    Article  Google Scholar 

  27. M.J. Whelan: Metal Sci. J., 1969, vol. 3, pp. 95–97.

    Article  CAS  Google Scholar 

  28. K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1990, vol. 73, pp. 3643–49.

    Article  CAS  Google Scholar 

  29. X. Yin, Y. Yang, D. Li, Y. Sun, X. Deng, M. Barati, and A. Mclean: Ironmak. Steelmak., 2017, vol. 44, pp. 140–51.

    Article  CAS  Google Scholar 

  30. T. Toh, H. Yamamura, H. Kondo, M. Wakoh, S. Shimasaki, and S. Taniguchi: ISIJ Int., 2007, vol. 47, pp. 1625–32.

    Article  CAS  Google Scholar 

  31. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, and K. Nagayama: J. Colloid Interf. Sci., 1993, vol. 157, pp. 100–12.

    Article  CAS  ADS  Google Scholar 

  32. D.Y.C. Chan, J.D. Henry, and L.R. White: J. Colloid Interf. Sci., 1981, vol. 79, pp. 410–18.

    Article  CAS  ADS  Google Scholar 

  33. S. Taniguchi, A. Kikuchi, T. Ise, and N. Shoji: ISIJ Int., 1996, vol. 36, pp. S117–20.

    Article  Google Scholar 

  34. V.V. Yaminsky, V.S. Yushchenko, E.A. Amelina, and E.D. Shchukin: J. Colloid Interf. Sci., 1983, vol. 96, pp. 301–06.

    Article  ADS  Google Scholar 

  35. V.S. Yushchenko, V.V. Yaminsky, and E.D. Shchukin: J. Colloid Interf. Sci., 1983, vol. 96, pp. 307–14.

    Article  CAS  ADS  Google Scholar 

  36. K. Sasai and Y. Mizukami: ISIJ Int., 2001, vol. 41, pp. 1331–39.

    Article  CAS  Google Scholar 

  37. K.L. Chen, D.Y. Wang, D. Hou, T.P. Qu, J. Tian, and H.H. Wang: ISIJ Int., 2019, vol. 59, pp. 1735–43.

    Article  CAS  Google Scholar 

  38. H.J. Duan, Y. Ren, and L.F. Zhang: Chem. Eng. Sci., 2018, vol. 196, pp. 14–24.

    Article  Google Scholar 

  39. J.J. Wang, L.F. Zhang, Y.X. Zhang, Q. Ren, and H.J. Duan: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2831–36.

    Article  ADS  Google Scholar 

  40. S.K. Michelic and C. Bernhard: Scanning, 2017, vol. 2017, p. 2326750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52074030 and 52104318).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Yang, S., Liu, W. et al. In Situ Observation of the Dissolution, Collision, and Aggregation Behavior of Nitride Inclusions in GH4169 Nickel-Based Superalloy. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03027-z

Navigation