Skip to main content
Log in

Evolutions of Electromagnetic Fields and Forced Flow Driven by the Pulse Length of a Pulsed Magnetic Field and Their Relevance to the Grain Refinement of a Solidified Al–Si Hypoeutectic Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A pulsed magnetic field (PMF) can cause significant grain refinement in solidified alloys. However, the evolution of forced flow and grain size by varying pulse length and the proposed mechanism of grain refinement driven by PMF are still controversial. The present paper systematically investigates the evolution of electromagnetic fields and fluid flow induced by PMF inside a Ga–20 wt pctIn–12 wt pctSn alloyed melt and the corresponding changes in grain size of Al–7 wt pctSi alloy with increasing pulse length in comparison with electric current intensity and frequency. It is found that the magnetic flux density adjacent to the mould wall almost remains constant, whereas the peak value of eddy current density and Lorenz force is reduced when the pulse length is increased from 1.6 to 12 ms. In addition, the flow intensity inside the melt firstly increases and then decreases when the pulse length is gradually enlarged. However, the magnetic flux density, eddy current density, Lorentz force and flow intensity inside the melt are all strengthened with an increase of the electric current intensity. The distribution and peak value of magnetic flux density, eddy current density and Lorentz force cannot be changed by the applied electric current frequency. Since the time over which the Lorentz force is applied is prolonged with increasing frequency, a positive correlation between the flow intensity and the frequency is achieved. The results of corresponding solidification experiments in Al–7 wt pctSi indicate that the grain size experiences the same evolution with flow intensity by varying the electric current intensity, frequency and pulse length. It is most likely that the dominant mechanism of grain refinement under applied PMF is the fragmentation of dendrites induced by forced flow rather than heterogeneous nucleation promoted by PMF.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Rabiger, Y. Zhang, V. Galindo, S. Franke, B. Willers, and S. Eckert: Acta Mater., 2014, vol. 79, pp. 327–38.

    Google Scholar 

  2. D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, and M.A. Easton: Nature, 2019, vol. 576, pp. 91–95.

    CAS  Google Scholar 

  3. Q. Tan, J. Zhang, Q. Sun, Z. Fan, Yu. Gan Li, Y.L. Yin, and M.X. Zhang: Acta Mater., 2020, vol. 196, pp. 1–16.

    CAS  Google Scholar 

  4. Y.H. Zhang, C.Y. Ye, Y.P. Shen, W. Chang, D.H. StJohn, G. Wang, and Q.J. Zhai: J. Alloy. Compd., 2020, vol. 812, p. 152022.

    CAS  Google Scholar 

  5. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock: Nature, 2017, vol. 549, pp. 365–69.

    CAS  Google Scholar 

  6. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292–304.

    CAS  Google Scholar 

  7. D.H. Stjohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907–21.

    CAS  Google Scholar 

  8. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    CAS  Google Scholar 

  9. X. Tong, Wu. Guohua, M.A. Easton, M. Sun, D.H. StJohn, R. Jiang, and F. Qi: Scripta Mater., 2022, vol. 215, p. 114700.

    CAS  Google Scholar 

  10. A. Ramirez, M. Qian, B. Davis, T. Wilks, and D.H. StJohn: Scripta Mater., 2008, vol. 59, pp. 19–22.

    CAS  Google Scholar 

  11. J.G. Jung, T.Y. Ahn, Y.H. Cho, S.H. Kim, and J.M. Lee: Acta Mater., 2018, vol. 144, pp. 31–40.

    CAS  Google Scholar 

  12. B. Nagasivamuni, G. Wang, D.H. StJohn, and M.S. Dargusch: J. Cryst. Growth, 2018, vol. 495, pp. 20–28.

    CAS  Google Scholar 

  13. S. Wang, J. Kang, Z. Guo, T.L. Lee, X. Zhang, Q. Wang, C. Deng, and J. Mi: Acta Mater., 2019, vol. 165, pp. 388–97.

    CAS  Google Scholar 

  14. N. Balasubramani, G. Wang, D.H. StJohn, and M.S. Dargusch: J. Mater. Sci. Technol., 2021, vol. 65, pp. 38–53.

    CAS  Google Scholar 

  15. N. Balasubramani, Xu. Yanyi, Y. Zhang, Q. Zhai, G. Wang, D. StJohn, and M. Dargusch: JOM, 2021, vol. 73, pp. 3873–82.

    CAS  Google Scholar 

  16. F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, and M. Mounib: Acta Mater., 2016, vol. 116, pp. 354–63.

    CAS  Google Scholar 

  17. Z.M. Yan, H. Liu, T.J. Li, X.Q. Zhang, Z.Q. Cao, and X.L. Zhang: Mater. Des., 2009, vol. 30, pp. 1245–50.

    CAS  Google Scholar 

  18. B. Willers, S. Eckert, P.A. Nikrityuk, D. Räbiger, J. Dong, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 304–16.

    CAS  Google Scholar 

  19. C. Vives: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 445–55.

    CAS  Google Scholar 

  20. M. Li, T. Tamura, and K. Miwa: Acta Mater., 2007, vol. 55, pp. 4635–43.

    CAS  Google Scholar 

  21. B. Zi, Q. Ba, J. Cui, and Xu. Guangming: Scripta Mater., 2000, vol. 43, pp. 377–80.

    Google Scholar 

  22. Y.L. Gao, Q.S. Li, Y.Y. Gong, and Q.J. Zhai: Mater. Lett., 2007, vol. 61, pp. 4011–14.

    CAS  Google Scholar 

  23. Y.Y. Gong, J. Luo, J.X. Jing, Z.Q. Xia, and Q.J. Zhai: Mater. Sci. Eng., A, 2008, vol. 497, pp. 147–52.

    Google Scholar 

  24. B. Wang, Y. Yang, J. Zhou, and W. Tong: Trans. Nonferr. Met. Soc. China, 2008, vol. 18, pp. 536–40.

    CAS  Google Scholar 

  25. X. Ma, Y. Li, and Y. Yang: J. Mater. Res., 2009, vol. 24, pp. 2670–76.

    CAS  Google Scholar 

  26. Z. Zhao, Y. Liu, and L. Liu: Mater. Manuf. Process., 2011, vol. 26, pp. 1202–06.

    CAS  Google Scholar 

  27. J.W. Fu and Y.S. Yang: Mater. Lett., 2012, vol. 67, pp. 252–55.

    CAS  Google Scholar 

  28. Z.X. Yin, Y.Y. Gong, B. Li, Y.F. Cheng, D. Liang, and Q.J. Zhai: J. Mater. Process. Technol., 2012, vol. 212, pp. 2629–34.

    CAS  Google Scholar 

  29. L. Zhang, J.P. Yao, H. Qiu, and Q. Zhou: Metall. Mater. Trans. B, 2012, vol. 43, pp. 598–602.

    CAS  Google Scholar 

  30. I. Edry, V. Erukhimovitch, A. Shoihet, Y. Mordekovitz, N. Frage, and S. Hayun: J. Mater. Sci., 2013, vol. 48, pp. 8438–42.

    CAS  Google Scholar 

  31. D. Liang, Z. Liang, Q. Zhai, G. Wang, and D.H. StJohn: Mater. Lett., 2014, vol. 130, pp. 48–50.

    CAS  Google Scholar 

  32. E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant: Acta Mater., 2014, vol. 70, pp. 228–39.

    CAS  Google Scholar 

  33. I. Edry, T. Mordechai, N. Frage, and S. Hayun: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1261–67.

    Google Scholar 

  34. H. Li, S. Liu, J. Jie, L. Guo, H. Chen, and T. Li: Int. J. Adv. Manuf. Technol., 2017, vol. 93, pp. 3033–42.

    Google Scholar 

  35. Q. Bai, Y. Ma, S. Xing, X. Bao, Y. Feng, and X. Kang: J. Mater. Eng. Perform., 2018, vol. 27, pp. 857–63.

    CAS  Google Scholar 

  36. Q. Chen and H. Shen: Int. J. Heat Mass Transf., 2018, vol. 120, pp. 997–1008.

    CAS  Google Scholar 

  37. S.P. Yue, Z.L. Zheng, J.C. Jie, Z.K. Guo, and T.J. Li: IOP Conf. Ser., 2018, vol. 424, p. 012072.

    Google Scholar 

  38. Y. Jia, H. Wang, and Q. Le: Int. J. Heat Mass Transf., 2019, vol. 143, p. 118524.

    CAS  Google Scholar 

  39. Y. Yang, K. Zhang, Y. Li, X. Feng, and T. Luo: Procedia Manuf., 2019, vol. 37, pp. 621–26.

    Google Scholar 

  40. Y. Jia, J. Hou, H. Wang, Q. Le, Q. Lan, X. Chen, and L. Bao: J. Mater. Process. Technol., 2020, vol. 278, p. 116542.

    CAS  Google Scholar 

  41. K. Zhang, Y. Li, and Y. Yang: J. Mater. Sci. Technol., 2020, vol. 48, pp. 9–17.

    Google Scholar 

  42. W. Duan, S. Yin, W. Liu, Z. Zhao, Hu. Kun, P. Wang, J. Cui, and Z. Zhang: J. Magn. Alloys, 2021, vol. 9, pp. 166–82.

    CAS  Google Scholar 

  43. I. Edry, A. Shoihet, and S. Hayun: J. Mater. Process. Technol., 2021, vol. 288, p. 116844.

    CAS  Google Scholar 

  44. J.C. Jie, S.P. Yue, J. Liu, D.H. StJohn, Y.B. Zhang, E.Y. Guo, T.M. Wang, and T.J. Li: Acta Mater., 2021, vol. 208, p. 116747.

    CAS  Google Scholar 

  45. X. Bao, Y. Ma, S. Xing, Y. Liu, and W. Shi: Metals, 2022, vol. 12, p. 1080.

    CAS  Google Scholar 

  46. Y. Liu, Xu. Guodong, Y. Wang, H. Zhong, L. Li, B. Wang, and Q. Zhai: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 144–50.

    Google Scholar 

  47. N. Shaburova, V. Krymsky, and A.O. Moghaddam: Materials, 2022, vol. 15, p. 1235.

    CAS  Google Scholar 

  48. Y. Wang, Xu. Rongjun, H. Zhong, Xu. Guodong, Xu. Zhishuai, R. Li, and Q. Zhai: Metals, 2022, vol. 12, p. 833.

    CAS  Google Scholar 

  49. Q. Li, C. Song, H. Li, and Q. Zhai: Mater. Sci. Eng. A, 2007, vol. 466, pp. 101–05.

    Google Scholar 

  50. Q. Li, H. Li, and Q. Zhai: J. Iron Steel Res. Int., 2006, vol. 13, pp. 69–72.

    CAS  Google Scholar 

  51. B. Wang, Y. Yang, and M. Sun: Trans. Nonferr. Met. Soc. China, 2010, vol. 20, pp. 1685–90.

    CAS  Google Scholar 

  52. W. Duan, Su. Wenxin, J. Bao, W. Liu, Z. Zhao, Z. Zhang, and J. Cui: Mater. Today Commun., 2022, vol. 31, p. 103441.

    CAS  Google Scholar 

  53. A.F. Kolesnichenko, A.D. Podoltsev, and I.N. Kucheryavaya: ISIJ Int., 1994, vol. 34, pp. 715–21.

    CAS  Google Scholar 

  54. G. Chen: In Northeastern University, 2014.

  55. J. Zhao, H. Qin, G. Liu, Xu. Zhishuai, and R. Li: Shanghai Met., 2020, vol. 42, pp. 68–76.

    CAS  Google Scholar 

  56. B. Wang, Y.S. Yang, J. Zhou, and W. Tong: Mater. Sci. Technol., 2011, vol. 27, pp. 176–79.

    Google Scholar 

  57. W. Duan, J. Bao, W. Liu, Z. Zhang, and J. Cui: Int. J. Heat Mass Transf., 2020, vol. 162, p. 120353.

    CAS  Google Scholar 

  58. I. Edry, N. Frage, and S. Hayun: Mater. Lett., 2016, vol. 182, pp. 118–20.

    CAS  Google Scholar 

  59. Q. Bai, Y. Ma, S. Xing, X. Bao, Y. Feng, Yu. Wenxia, and X. Kang: Int. J. Mater. Res., 2017, vol. 108, pp. 1064–72.

    CAS  Google Scholar 

  60. R. Qin and B. Zhou: Chin. J. Mater. Res., 1997, vol. 11, pp. 69–72.

    CAS  Google Scholar 

  61. R.S. Qin and A. Bhowmik: Mater. Sci. Technol., 2015, vol. 31, pp. 1560–63.

    CAS  Google Scholar 

  62. Y.H. Zhang, Y.Y. Xu, C.Y. Ye, C. Sheng, J. Sun, G. Wang, X.C. Miao, C.J. Song, and Q.J. Zhai: Sci. Rep., 2018, vol. 8, p. 3242.

    CAS  Google Scholar 

  63. S. Eckert, G. Gerbeth, and V.I. Melnikov: Exp. Fluids, 2003, vol. 35, pp. 381–88.

    CAS  Google Scholar 

  64. G.F. Vander Voort: Grain Size Measurement, ASTM International, Philadelphia, 1984.

    Google Scholar 

  65. Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, and R. Novakovic: J. Chem. Eng. Data, 2015, vol. 60, pp. 2756–2856.

    CAS  Google Scholar 

  66. P.A. Davidson: Annu. Rev. Fluid Mech., 1999, vol. 31, pp. 273–300.

    Google Scholar 

  67. Shigeo Asai: Electromagnetic processing of materials. Springer Netherlands, Germany, 2012, p.^pp. 20-21.

  68. J.C.R. Hunt: J. Fluid Mech., 2006, vol. 57, pp. 826–28.

    Google Scholar 

  69. Y. Y. Xu, J. Zhao, C. Y. Ye, Y. P. Shen, X. C. Miao, Y. H. Zhang, and Q. J. Zhai: Acta Metall. Sin. (English Letters), 2022, vol. 35, pp. 254–74.

    Google Scholar 

  70. S. Asai: ISIJ Int., 1989, vol. 29, pp. 981–92.

    CAS  Google Scholar 

  71. P.A. Davidson: In, 2006.

  72. C. Li, Z. Ren, W. Ren, and Wu. Yuqin: Trans. Nonferr. Met. Soc. China, 2012, vol. 22, pp. s1-6.

    Google Scholar 

  73. C. Li, Z. Ren, and W. Ren: Mater. Lett., 2009, vol. 63, pp. 269–71.

    CAS  Google Scholar 

  74. C. Li, H. Yang, Z. Ren, W. Ren, and Wu. Yuqin: Prog. Electromagn. Res. Lett., 2010, vol. 15, pp. 45–52.

    Google Scholar 

  75. C. Li, L. Chen, and Z. Ren: Rev. Sci. Instrum., 2012, https://doi.org/10.1063/1.4704081.

    Article  Google Scholar 

  76. A.K. Dahle and L. Arnberg: Acta Mater., 1997, vol. 45, pp. 547–59.

    CAS  Google Scholar 

  77. D. Emadi, L. V. Whiting, M. Djurdjevic, W. T. Kierkus, and J. Sokolowski: Metall. Mater. Eng., 2018.

  78. G. Zimmermann, C. Pickmann, E. Schaberger-Zimmermann, V. Galindo, K. Eckert, and S. Eckert: Materialia, 2018, vol. 3, pp. 326–37.

    CAS  Google Scholar 

  79. K. Zhang, Y. Li, and Y. Yang: Acta Metall. Sin. (Engl. Lett.), 2020, vol. 33, pp. 1442–54.

    CAS  Google Scholar 

  80. T. Campanella, C. Charbon, and M. Rappaz: Metall. Mater. Trans. A., 2004, vol. 35, pp. 3201–10.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Grant Nos. 51974183, 52074180, 52271034), the Science and Technology Commission of Shanghai Municipality (Grant No. 22ZR1425000), and Gao pin zhi zai sheng lv gui xi he jin zhi zao gong yi ji shi fan ying yong (No. 2022FRD05007).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhu Zhang, Jianlei Zhang or Gui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, J., Zhang, J. et al. Evolutions of Electromagnetic Fields and Forced Flow Driven by the Pulse Length of a Pulsed Magnetic Field and Their Relevance to the Grain Refinement of a Solidified Al–Si Hypoeutectic Alloy. Metall Mater Trans B 54, 3180–3202 (2023). https://doi.org/10.1007/s11663-023-02900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02900-7

Navigation