Skip to main content
Log in

3D CFD Model of Ladle Heat Transfer With Gas Injection

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A fully transient 3D CFD model of an industrial argon bottom-stirred ladle with two eccentric porous plugs was developed. The computational domain included molten steel, slag, air and refractory phases. The slag-air interface was set as a free surface to ensure that the influence of the flow and the heat dissipation at the slag free surface on the temperature of the molten steel can be considered simultaneously. As a result, the model reasonably predicted the velocity and temperature distribution of molten steel, heat losses from the top slag layer and the temperature distribution in the refractory walls due to bottom gas injection. Previous numerical models on heat transfer in ladles have either neglected bottom gas injection, assumed a constant heat flux through the top slag layer or assumed a flat surface. The current mathematical model overcomes the previous limitations, it is capable to predict fluid flow and temperature distribution under transient conditions comparing a flat and a free surface. It is shown that the assumption of a flat surface leads to errors in the numerical predictions, it also predicts heat losses by the top slag surface and the refractory walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Fredman: Scand. J. Metall., 2000, vol. 29, pp. 232–58.

    Article  CAS  Google Scholar 

  2. J. Szekely and J. Chen: Metall. Trans., 1971, vol. 2, pp. 1189–92.

    Article  Google Scholar 

  3. P. Egerton, J. Howarth, G. Poots, and S. Taylor-Reed: Int. J. Heat Mass Transf., 1979, vol. 22, pp. 1525–32.

    Article  Google Scholar 

  4. O. Ilegbusi and J. Szekely: Trans. Iron Steel Inst. Japan, 1987, vol. 27, pp. 563–69.

    Article  CAS  Google Scholar 

  5. A. Castillejos, M. Salcudean, and J. Brimacombe: Metall. Trans. B, 1989, vol. 20, pp. 603–11.

    Article  Google Scholar 

  6. H. Turkoglu and B. Farouk: ISIJ Int., 1990, vol. 30, pp. 961–70.

    Article  Google Scholar 

  7. H. Turkoglu and B. Farouk: Numer. Heat Transfer Part A, 1992, vol. 21, pp. 377–99.

    Article  CAS  Google Scholar 

  8. P. Austin, J. Camplin, J. Herbertson, and I. Taggart: Trans. Iron Steel Inst. Japan, 1992, vol. 32, pp. 196–202.

    Article  Google Scholar 

  9. P. Austin, M. Gebhard and Q. He: 11th Australasian Fluid Mechanics Conference, 1992, pp. 579–82.

  10. S. Chakraborty and Y. Sahai: Metall. Trans. B, 1992, vol. 23, pp. 135–51.

    Article  Google Scholar 

  11. M. Neifer, S. Rodl, and D. Sucker: Process Metall., 1993, vol. 64, pp. 54–62.

    CAS  Google Scholar 

  12. T. Fredman, J. Torrkulla, and H. Saxén: IFAC Proc. Volumes, 1997, vol. 30, pp. 193–98.

    Article  Google Scholar 

  13. T. Fredman and H. Saxe: Metall. Mater. Trans. B., 1998, vol. 29B, pp. 651–59.

    Article  CAS  Google Scholar 

  14. T. Fredman, J. Torrkulla, and H. Saxén: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 323–0.

    Article  CAS  Google Scholar 

  15. R. Weber: Report 1993.

  16. Y. Cao, S. Yang, and D. Li: J. Univ. Sci. Technol. Beijing, 1997, vol. 19, pp. 125–29.

    CAS  Google Scholar 

  17. C. Grip, L. Jonsson, P. Jönsson, and K. Jonsson: ISIJ Int., 1999, vol. 39, pp. 715–21.

    Article  CAS  Google Scholar 

  18. C. Grip, K. Jonsson, S. Eriksson, L. Jonsson, P. Jönsson, and Y. Pan: Scand. J. Metall., 2000, vol. 29, pp. 30–8.

    Article  CAS  Google Scholar 

  19. H. Tian, Z. Mao, and A. Wang: ISIJ Int., 2009, vol. 49, pp. 58–63.

    Article  CAS  Google Scholar 

  20. D. Livshits, I. Popandopulo, V. Parshin, V. Kuslitsa, O. Isaev, and A. Travinchev: Steel Transl., 2010, vol. 40, pp. 979–82.

    Article  Google Scholar 

  21. P. Deb, A. Mukhopadhyay, A. Ghosh, B. Basu, S. Paul, G. Mishra, J.K. Saha, R. Sharma, and S. Sarkar: Steel Res., 2001, vol. 72, pp. 200–07.

    Article  CAS  Google Scholar 

  22. A. Mukhopadhyay, P. Deb, A. Ghosh, B. Basu, R. Dutta, and P. Kumar: Process Metall., 2001, vol. 72, pp. 192–99.

    CAS  Google Scholar 

  23. J. Xia and T. Ahokainen: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 733–41.

    Article  CAS  Google Scholar 

  24. J. Xia and T. Ahokainen: Can. Metall. Q., 2001, vol. 40, pp. 479–87.

    Article  CAS  Google Scholar 

  25. H. Tang, X. Guo, J. Wang, Y. Wang, and P. Cheng: Chin. J. Eng., 2016, vol. 38, pp. 139–45.

    Google Scholar 

  26. V. Seshadri, I. Duarte, I. Da Silva and C. Da Silva: 7th International Symposium on High-Temperature Metallurgical Processing 2016, pp. 487–94.

  27. A. Deodhar, U. Singh, R. Shukla, and B. Gautham: Metall. Mater. Trans. B, 2017, vol. 47B, pp. 1217–29.

    Article  Google Scholar 

  28. H. Gonzalez, J. Ramos-Banderas, E. Torres-Alonso, G. Solorio-Diaz, and C. Hernández-Bocanegra: J. Iron. Steel Res. Int., 2017, vol. 24, pp. 888–900.

    Article  Google Scholar 

  29. B. Lu, X. Meng, and M. Zhu: Catal. Today, 2018, vol. 318, pp. 180–90.

    Article  CAS  Google Scholar 

  30. Y. Pan and B. Björkman: ISIJ Int., 2002, vol. 42, pp. 53–62.

    Article  CAS  Google Scholar 

  31. S. Ganguly and S. Chakraborty: ISIJ Int., 2004, vol. 44, pp. 537–46.

    Article  CAS  Google Scholar 

  32. S. Ganguly and S. Chakraborty: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 541–46.

    Article  CAS  Google Scholar 

  33. D. Mohammadi, S. Seyedein, and M. Aboutalebi: Ironmak. Steelmak., 2013, vol. 40, pp. 342–49.

    Article  CAS  Google Scholar 

  34. T. Jormalainen and S. Louhenkilpi: Steel Res. Int., 2006, vol. 77, pp. 472–84.

    Article  CAS  Google Scholar 

  35. A. Socalici, V. Putan and A. Josan: 11th International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology”, Hammamet, Tunisia, 2007, pp. 1275–78.

  36. F. Maldonado-Parra, M. Ramírez-Argáez, A. Conejo, and C. González: ISIJ Int., 2011, vol. 51, pp. 1110–8.

    Article  CAS  Google Scholar 

  37. H. Duan, Y. Ren, and L. Zhang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1476–89.

    Article  Google Scholar 

  38. N. Gupta and S. Chandra: ISIJ Int., 2004, vol. 44, pp. 1517–26.

    Article  CAS  Google Scholar 

  39. J. Xia, T. Ahokainen, and L. Holappa: Scand. J. Metall., 2001, vol. 30, pp. 69–76.

    Article  CAS  Google Scholar 

  40. C. Grip, L. Jonsson, and P. Jönsson: ISIJ Int., 1997, vol. 37, pp. 1081–90.

    Article  CAS  Google Scholar 

  41. E. Gopala Krishna, S. Shamshoddin, and R. Ande: J. Therm. Sci. Eng. Appl., 2018, vol. 11, pp. 1–51.

    Google Scholar 

  42. C. Grip and L. Jonsson: Scand. J. Metall., 2003, vol. 32, pp. 113–22.

    Article  CAS  Google Scholar 

  43. L. Gan, J. Xin, and Y. Zhou: ISIJ Int., 2017, vol. 57, pp. 1303–2.

    Article  CAS  Google Scholar 

  44. J. Xin, L. Gan, L. Jiao, and C. Lai: ISIJ Int., 2017, vol. 57, pp. 1340–49.

    Article  CAS  Google Scholar 

  45. B. Glaser and D. Sichen: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 1–4.

    Article  Google Scholar 

  46. https://ansyshelp.ansys.com/, 2020, pp. 426.

  47. A. Gosman and E. loannides: J. Energy, 1983, vol. 7, pp. 482–90.

  48. T. Shih, W. Liou, A. Shabbir, Z. Yang, and J. Zhu: Comput. Fluids, 1994, vol. 24, pp. 227–38.

    Article  Google Scholar 

  49. M. Li and L. Zhang: Processes, 2020, vol. 8, p. 1663.

    Article  CAS  Google Scholar 

  50. J. Xia and T. Ahokainen: Scand. J. Metall., 2003, vol. 32, pp. 211–17.

    Article  CAS  Google Scholar 

  51. N. Nath, K. Mandal, A. Singh, B. Basu, C. Bhanu, S. Kumar, and A. Ghosh: Ironmak. Steelmak., 2006, vol. 33, pp. 140–50.

    Article  CAS  Google Scholar 

  52. X. Zhang: Principles of Transfer in Metallurgy, 1st ed. Metallurgical Industry Press, Beijing, 1988, p. 304.

    Google Scholar 

  53. S. Churchill and H. Chu: Int. J. Heat Mass Transf., 1975, vol. 18, pp. 1323–329.

    Article  CAS  Google Scholar 

  54. Q. Cao and L. Nastac: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1388–404.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the Fundamental Research Funds (Grant No. 06500108) from the University of Science and Technology Beijing, China. We also want to acknowledge the anonymous reviewers for their criticism which helped to improve the final version of this manuscript.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto N. Conejo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, K., Feng, W., Conejo, A.N. et al. 3D CFD Model of Ladle Heat Transfer With Gas Injection. Metall Mater Trans B 54, 2066–2079 (2023). https://doi.org/10.1007/s11663-023-02816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02816-2

Navigation