Skip to main content
Log in

Optimizing Iron Ore Proportion Aimed for Low Cost by Linear Programming Method

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Optimizing iron ore proportion is significant for improving the performances of sintering process, and the cost of iron ores is important for iron and steel company. Linear programming is an effective optimization method, which can consider both the indices of ore proportion and the cost of iron ores at the same time. Therefore, in the present work, aimed for reducing the cost of sintering materials with keeping required indices, the optimizing ore proportion was investigated by linear programming. First, the basic physicochemical properties of seven kinds of iron ores in a sintering plant were tested, including chemical composition, size distribution, and sintering characteristics (assimilation property, fluidity of liquid phase, and self-strength of bonding phase). Then, the constraint conditions were set according to a base period of the plant, and optimizing iron ore proportion by linear programming was carried out. The optimized ore proportion is 11 pct B + 35 pct C + 18 pct D + 7 pct E + 16 pct F + 13 pct G. The cost of mixed ore decreases from 1245.75 CNY/(t-mixed ore) to 1233.89 CNY/(t-mixed ore), decreases by about 12 CNY/(t-mixed ore) after optimization. Finally, the optimized results of linear programming were verified by sinter pot tests. The difference of sinter pot indices between base period and optimized period is not obvious. The vertical sintering speeds in base period and optimized period are 27.37 mm/min and 26.81 mm/min, respectively, and the tumble indices are 75.93 pct and 75.31 pct, respectively. In general, the ore proportioning by linear programming can obviously reduce the cost of iron ores in sintering process with keeping good sintering performances and good quality of sinter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z.W. Yan, J.L. Zhang, Y.P. Zhang, Z.L. Chen, Y.Z. Wang, B. Gao, and Y. Zhang: Chin. J. Eng., 2016, vol. 38, pp. 913–19.

    Google Scholar 

  2. H.P. Li, S.L. Wu, Z.B. Hong, W.L. Zhang, H. Zhou, and M.Y. Kou: Processes, 2019, vol. 7, p. 931.

    Article  Google Scholar 

  3. Z.C. Yang, Z.G. Liu, M.S. Chu, L.H. Gao, C. Feng, and J. Tang: ISIJ Int., 2021, vol. 61, pp. 1431–38.

    Article  Google Scholar 

  4. H. Guo, F.M. Shen, H.Y. Zhang, Q.J. Gao, and X. Jiang: Metals, 2019, vol. 9, p. 510.

    Article  Google Scholar 

  5. G.C. Zhang, G.P. Luo, W. Song, S. Tian, S. Hao, and Q. Ren: Sintering Pelletizing, 2021, vol. 46, pp. 7–13.

    Google Scholar 

  6. F. Wang, J.F. Xiang, Y.F. Guo, and F.Q. Zheng: Iron Steel Res., 2020, vol. 32, pp. 89–95.

    Google Scholar 

  7. Q.J. Gao, H. Wang, X.Y. Pan, X. Jiang, H.Y. Zheng, and F.M. Shen: Powder Technol., 2021, vol. 390, pp. 256–67.

    Article  Google Scholar 

  8. Y.Q. Xie, Z.Z. Zhang, Z.H. Wang, and T.J. Chun: China Metall., 2018, vol. 28, pp. 9–15.

    Google Scholar 

  9. X.F. Lv, H.L. Han, and H.S. He: Int. J. Adv. Mater. Res., 2011, vol. 402, pp. 183–86.

    Google Scholar 

  10. Y.J. Lee and J.H. Lee: Powder Metall., 2021, vol. 64, pp. 235–40.

    Article  Google Scholar 

  11. S.T. Yang, M. Zhou, T. Jiang, and X.X. Xue: Minerals, 2021, vol. 11, p. 515.

    Article  Google Scholar 

  12. D.K. Rajak, M. Singhai, R. Sahu, and S. Hazra: Trans. Indian Inst. Met., 2021, vol. 74, pp. 1611–22.

    Article  Google Scholar 

  13. W.J. Li: Sintering Pelletizing, 1985, vol. 3, pp. 48–52.

    Google Scholar 

  14. B.Y. Gao: Sintering Pelletizing, 2001, vol. 1, pp. 32–34.

    Google Scholar 

  15. D. Oliveira: J. Iron Steel Res. Int., 2012, vol. 19, pp. 1–5.

    Article  Google Scholar 

  16. P.F. Li, S.Y. Tang, L. Guo, F.Q. Zheng, and Y.F. Guo: Sintering Pelletizing, 2021, vol. 46, pp. 15–20.

    Google Scholar 

  17. A.M. Nyembwe and G. Craig: Ironmak. Steelmak., 2014, vol. 41, pp. 173–81.

  18. L. Nie, C. Liu, G. Liu, J. Zhang, Q. Lang, and K. Wu: Ind. Heat., 2021, vol. 50, pp. 18–22.

    Google Scholar 

  19. K. Eiki, S.L. Wu, and O. Yasuo: Tetsu to Hagane, 1991, vol. 77, pp. 56–62.

    Article  Google Scholar 

  20. S.L. Wu, Y. Liu, J.X. Du, K. Mi, and H. Lin: J. Univ. Sci. Technol. Beijing, 2002, vol. 3, pp. 254–57.

    Google Scholar 

  21. M. Todd: Math. Program., 2002, vol. 91, pp. 417–36.

    Article  Google Scholar 

  22. E. Fathy: Alexandria Eng. J., 2022, vol. 61, pp. 10419–32.

    Article  Google Scholar 

  23. X.W. Li, G.F. Yan, and Q.N. Li: Methods of Optimization, Beijing Inst. Technol. Press, Beijing, China, 2018, pp. 36–71.

    Google Scholar 

  24. A. Blass: Contemp. Math., 1984, vol. 31, pp. 31–33.

    Article  Google Scholar 

  25. H. Allen: Am. Math. Mon., 2009, vol. 116, pp. 471–76.

    Article  Google Scholar 

  26. S.I. Gass: SIAM Rev., 1998, vol. 40, pp. 149–52.

    Google Scholar 

  27. R.W. Cottle: SIAM Rev., 2006, vol. 36, pp. 666–68.

    Article  Google Scholar 

  28. E. Buyukkoca, I. Yamada, and I. Kusaba: J. Chem. Eng. Jpn., 1974, vol. 7, pp. 392–94.

    Article  Google Scholar 

  29. A.H. Ansari: Z. Angew. Math. Phys., 2019, vol. 7, pp. 23–30.

    Google Scholar 

  30. A.L. Zhang and H. Tang: J. Kunming Univ. Sci. Technol., 2014, vol. 39, pp. 53–57.

    Google Scholar 

  31. X. Jiang, H.Y. Zhang, H.Y. Zheng, Q.J. Gao, and F.M. Shen: J. Iron Steel Res. Int., 2020, vol. 27, pp. 624–30.

    Article  Google Scholar 

  32. X. Jiang, F.M. Shen, H.S. Han, F. Long, H.Y. Zheng, and Q.J. Gao: Iron Steel, 2019, vol. 54, pp. 13–17.

    Google Scholar 

  33. Q.C. Hu, C.L. Wu, J.H. Sun, N. Wang, and B.S. Hu: Int. J. Miner. Process. Extr. Metall., 2019, vol. 4, pp. 1–6.

    Google Scholar 

  34. Y.Q. Sun, D.H. Liu, L.Y. Sun, Q. Lv, and R. Liu: Int. J. Adv. Mater. Res., 2014, vol. 2951, pp. 1687–90.

    Google Scholar 

  35. T. Deng, X.Y. Cao, and J.C. Wang: China Metall., 2015, vol. 25, pp. 33–37.

    Google Scholar 

  36. K. Junya, K. Eiki, S. Fumio, and K. Takazo: ISIJ Int., 2005, vol. 45, pp. 500–05.

    Article  Google Scholar 

  37. B.G. Ellis, C.E. Loo, and D. Witchard: Ironmak. Steelmak., 2013, vol. 34, pp. 99–108.

    Article  Google Scholar 

  38. M.L. Li, T.J. Chun, and Z.Y. Ruan: Min. Eng., 2022, vol. 20, pp. 40–4.

    Google Scholar 

  39. S.P. Yang, H.J. Liu, H.X. Sun, T.T. Zhang, and S.M. Liu: Materials, 2022, vol. 15, p. 3329.

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports by the National Key Research and Development Program of China (Grant No. 2021YFC2902400), the National Natural Science Foundation of China (NSFC 52074074, NSFC 51874080, NSFC 62001312, NSFC 51974073), the Xingliao Talent Project (XLYC2007152), and the Fundamental Research Funds for the Central Universities (N2125036) are much appreciated.

Conflict of interest

The author declares this manuscript has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Jiang, X., Wang, X. et al. Optimizing Iron Ore Proportion Aimed for Low Cost by Linear Programming Method. Metall Mater Trans B 53, 4075–4086 (2022). https://doi.org/10.1007/s11663-022-02667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02667-3

Navigation