Skip to main content
Log in

Three-Dimensional Evaluation of Internal Quality of the Continuous Casting Billet of a High Carbon Steel Using X-ray Computed Tomography

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The internal quality of the continuous casting (CC) billet of a high carbon steel was three-dimensionally evaluated using X-ray computed tomography (X-CT). Internal defects were divided into porosities and large inclusions based on their sphericity. The porosities had a total number density of 1.62 #/mm3 and a total volume fraction of 449 ppm, while the number density and volume fraction of large inclusions were 0.383 #/mm3 and 68.6 ppm, respectively. The volume fraction of porosities increased gradually from the chilled layer toward the mixed zone of the billet, before increasing sharply in the equiaxed zone. Meanwhile, the number density of porosities increased sharply in both the mixed and equiaxed zones. There were three regions rich in large inclusions along the billet thickness: near the center of the equiaxed zone and the interfaces between the columnar and mixed zones. Two sources of large inclusions were proposed. The smaller inclusions (< 150 μm) with a significantly large quantity were estimated to mainly originate from endogenous inclusions generated by deoxidation or reoxidation, while the larger ones (> 150 μm) with a small quantity would mainly come from the entrainment of slag. Both the areal and bulk densities of the billet, 98.6 and 99.7 pct, respectively, were the smallest in the center of the equiaxed zone, which was consistent with the distribution of porosity defects and carbon segregation determined by traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. L. Zhang: Non-Metallic Inclusions in Steels: Industrial Practice, Metallurgical Industry Press, Beijing, 2020. (in Chinese).

    Google Scholar 

  2. L. Zhang, C. Guo, W. Yang, Y. Ren, and H. Ling: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 803–11.

    Article  CAS  Google Scholar 

  3. L. Zhang: Steel Res. Int., 2006, vol. 77, pp. 158–69.

    Article  CAS  Google Scholar 

  4. B. Alfredsson and E. Olsson: Int. J. Fatigue., 2012, vol. 41, pp. 130–9.

    Article  CAS  Google Scholar 

  5. S.K. Choudhary, S. Ganguly, A. Sengupta, and V. Sharma: J. Mater. Process. Technol., 2017, vol. 243, pp. 312–21.

    Article  CAS  Google Scholar 

  6. Y. Wang, L. Zhang, W. Yang, S. Ji, and Y. Ren: Steel Res. Int., 2021, vol. 92, p. 2000661.

    Article  CAS  Google Scholar 

  7. H.F. Jacobi: Steel Res. Int., 2003, vol. 74, pp. 667–78.

    Article  CAS  Google Scholar 

  8. S.K. Choudhary and S. Ganguly: ISIJ Int., 2007, vol. 47, pp. 1759–66.

    Article  CAS  Google Scholar 

  9. T.S. Piwonka, S. Kuyucak, and K.G. Davis: Trans. Am. Foundry Soc., 2002, vol. 113, pp. 1257–71.

    Google Scholar 

  10. S. Minakawa, I.V. Samarasekera, and F. Weinberg: Metall. Trans. B., 1985, vol. 16B, pp. 823–29.

    Article  CAS  Google Scholar 

  11. Q. Zhang, L. Wang, and X. Wang: ISIJ Int., 2006, vol. 46, pp. 1421–26.

    Article  CAS  Google Scholar 

  12. A.L.V.d. Costa e Silva: J. Mater. Res. Technol., 2019, vol. 8, pp. 2408–22.

  13. R.A. Hardin and C. Beckermann: Metall. Mater. Trans. A., 2007, vol. 38A, pp. 2992–3006.

    Article  CAS  Google Scholar 

  14. R.A. Hardin and C. Beckermann: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 5316–32.

    Article  CAS  Google Scholar 

  15. Z. Xu, X. Wang, and M. Jiang: Steel Res. Int., 2017, vol. 88, p. 1600061.

    Article  CAS  Google Scholar 

  16. J.-Y. Jeong, B.-T. Kim, S.-H. Kwon, M.-H. Kang, D.-G. Kim, Y.-U. Heo, J.-S. Lee, and C.-H. Yim: Steel Res. Int., 2020, vol. 91, p. 2000046.

    Article  CAS  Google Scholar 

  17. M.A. Islam, M. Novovic, P. Bowen, and J.F. Knott: J. Mater. Eng. Perform., 2003, vol. 12, pp. 244–48.

    Article  CAS  Google Scholar 

  18. O. Haida, H. Kitaoka, Y. Habu, S. Kakihara, H. Bada, and S. Shiraishi: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 891–98.

    Article  Google Scholar 

  19. W. Yang, Y. Zhang, L. Zhang, J. Jiang, and C. Wu: Iron Steel, 2021, vol. 56, pp. 74–79, 87.

  20. C. Yang, P. Liu, Y. Luan, D. Li, and Y. Li: Int. J. Fatigue, 2019, vol. 128, p. 105193.

  21. M. Wu, W. Fang, R. Chen, B. Jiang, H. Wang, Y. Liu, and H. Liang: Mater. Sci. Eng., A, 2019, vol. 744, pp. 324–34.

  22. H. Fu, J.J. Rydel, A.M. Gola, F. Yu, K. Geng, C. Lau, H. Luo, and E.J. Rivera: Int. J. Fatigue, 2019, vol. 129, p. 104899.

  23. H. Li, L. Wang, H. Xiao, J. Xu, S. Zheng, Q. Zhai, and K. Han: Metall. Mater. Trans. A., 2018, vol. 50A, pp. 336–47.

    Google Scholar 

  24. H.T. Tsai, W.J. Sammon, and D.E. Hazelton: Steelmaking Conf. Proc., 1990, pp. 49–59.

  25. P. Rocabois, J.-N. Pontoire, V. Delville, and I. Marolleau: ISSTech 2003 Conf. Proc., 2003, pp. 995–1006.

  26. Y. Murakami and M. Shimizu: Trans. Jpn. Soc. Mech. Eng. Ser. A., 1988, vol. 54, pp. 413–25.

    Article  Google Scholar 

  27. C. Sun, Z. Lei, J. Xie, and Y. Hong: Int. J. Fatigue., 2013, vol. 48, pp. 19–27.

    Article  CAS  Google Scholar 

  28. T. Cong, G. Qian, G. Zhang, S. Wu, X. Pan, L. Du, and X. Liu: Int. J. Fatigue, 2021, vol. 142, p. 105958.

  29. Z. Lei, Y. Hong, J. Xie, C. Sun, and A. Zhao: Mater. Sci. Eng., A, 2012, vol. 558, pp. 234–41.

  30. U. Karr, Y. Sandaiji, R. Tanegashima, S. Murakami, B. Schönbauer, M. Fitzka, and H. Mayer: Int. J. Fatigue, 2020, vol. 134, p. 105525.

  31. K. Lambrighs, I. Verpoest, B. Verlinden, and M. Wevers: Proc. Eng., 2010, vol. 2, pp. 173–81.

    Article  CAS  Google Scholar 

  32. J. Zhang, S. Li, Z. Yang, G. Li, W. Hui, and Y. Weng: Int. J. Fatigue., 2007, vol. 29, pp. 765–71.

    Article  CAS  Google Scholar 

  33. F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li: Mater. Sci. Eng., A, 2010, vol. 527, pp. 6997–7001.

  34. H.B. Xue and Y.F. Cheng: Corros. Sci., 2011, vol. 53, pp. 1201–8.

    Article  CAS  Google Scholar 

  35. T.Y. Jin, Z.Y. Liu, and Y.F. Cheng: Int. J. Hydrog. Energy., 2010, vol. 35, pp. 8014–21.

    Article  CAS  Google Scholar 

  36. Q. Liu, S. Yang, M. Zhao, L. Zhu, and J. Li: Metals., 2017, vol. 7, p. 347.

    Article  CAS  Google Scholar 

  37. L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, and Z. Cui: Corros. Sci., 2019, vol. 147, pp. 108–27.

    Article  CAS  Google Scholar 

  38. H.Y. Ha, C.J. Park, and H.S. Kwon: Corros. Sci., 2007, vol. 49, pp. 1266–75.

    Article  CAS  Google Scholar 

  39. W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu, and Q. Shan: ISIJ Int., 2013, vol. 53, pp. 1401–10.

    Article  CAS  Google Scholar 

  40. Q. Wang, L. Zhang, S. Seetharaman, S. Yang, W. Yang, and Y. Wang: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1594–1612.

    Article  CAS  Google Scholar 

  41. Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S.N. Lekakh, and K. Peaslee: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1291–1303.

    Article  CAS  Google Scholar 

  42. L. Zhang: Non-Metallic Inclusionsin Steels: Fundamentals, Metallurgical Industry Press, Beijing, 2020. (in Chinese).

    Google Scholar 

  43. W. Yang, X. Wang, L. Zhang, and W. Wang: Steel Res. Int., 2013, vol. 84, pp. 878–91.

    Article  CAS  Google Scholar 

  44. X. Zhang, L. Zhang, W. Yang, and Y. Dong: Steel Res. Int., 2017, vol. 88, p. 1600080.

    Article  CAS  Google Scholar 

  45. X. Zhang, L. Zhang, W. Yang, Y. Zhang, Y. Ren, and Y. Dong: Metall. Res. Technol., 2017, vol. 114, p. 113.

    Article  Google Scholar 

  46. X. Zhang, L. Zhang, W. Yang, Y. Wang, Y. Liu, and Y. Dong: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 701–12.

    Article  CAS  Google Scholar 

  47. T. Li, S.-I. Shimasaki, S. Taniguchi, K. Uesugi, and S. Narita: ISIJ Int., 2013, vol. 53, pp. 1943–52.

    Article  CAS  Google Scholar 

  48. T. Li, S.i. Shimasaki, S. Taniguchi, S. Narita, and K. Uesugi: ISIJ Int., 2016, vol. 56, pp. 1989–95.

  49. J. Kastner, B. Harrer, and H.P. Degischer: Mater. Charact., 2011, vol. 62, pp. 99–107.

    Article  CAS  Google Scholar 

  50. B. Harrer, H.P. Degischer, and J. Kastner: Proc. 10th Eur. Conf. on Non-Destructive Testing, RSNTTD, Moscow, 2010.

  51. J. Yan, T. Li, Z. Shang, and H. Guo: Mater. Charact., 2019, vol. 158, p. 109944.

  52. W. Yang, L. Zhang, Y. Ren, H. Duan, Y. Zhang, and X. Xiao: Acta Metall. Sinica., 2016, vol. 52, pp. 217–23.

    CAS  Google Scholar 

  53. D. Kumar, R. Cunningham, and P. Chris Pistorius: AISTech 2018 Iron and Steel Technology Conf. Expo., 2018, pp. 1493–1500.

  54. Z. Shang, T. Li, S. Yang, J. Yan, and H. Guo: J Mater. Res. Technol., 2020, vol. 9, pp. 3686–98.

    Article  CAS  Google Scholar 

  55. L. Cui, X. Lei, L. Zhang, Y. Zhang, W. Yang, Y. Gao, Y. Liu, and N. Liu: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2327–40.

    Article  CAS  Google Scholar 

  56. L. Zhang: JOM., 2013, vol. 65, pp. 1138–44.

    Article  CAS  Google Scholar 

  57. Q. Wang and L. Zhang: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1933–49.

    Article  CAS  Google Scholar 

  58. W. Chen, Y. Ren, and L. Zhang: JOM., 2018, vol. 70, pp. 2968–79.

    Article  CAS  Google Scholar 

  59. W. Chen, L. Zhang, Q. Ren, Q. Wang, X. Cai, Y. Ren, and W. Yang: Metall. Mater. Trans. B, 2021, vol. 52B, published online.

  60. M.-A. Van Ende, M. Guo, E. Zinngrebe, B. Blanpain, and I.-H. Jung: ISIJ Int., 2013, vol. 53, pp. 1974–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. 51874031, 52174293, U1860206, and 51725402), the Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-20-04A), the S&T Program of Hebei (Grant No. 20311004D), the High Steel Center (HSC), the Hebei Innovation Center of the Development and Application of High Quality Steel Materials, the Hebei International Research Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials at Yanshan University, and the Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM) at the University of Science and Technology Beijing.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Zhang or Wen Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Lei, X., Zhang, L. et al. Three-Dimensional Evaluation of Internal Quality of the Continuous Casting Billet of a High Carbon Steel Using X-ray Computed Tomography. Metall Mater Trans B 53, 1603–1616 (2022). https://doi.org/10.1007/s11663-022-02470-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02470-0

Navigation