Skip to main content
Log in

Inhibitory Effect of MgO, FeO, CaF2, and Al2O3 Additives on the Dissolution Behavior of Ca from Silicate Mineral Phases into Water

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The inhibitory effect of MgO, FeO, CaF2, and Al2O3 additive on the dissolution of Ca into water from 10 quasi-ternary silicate mineral phases was studied according to the silicate crystal structure. After adding MgO or FeO, the dissolution ratio of Ca decreased by Ca2+ substitution with Mg2+ or Fe2+. In the CaF2-added silicate phase Ca4Si2O7F2, non-existence of the face-sharing type of linkage between CaOx polyhedrons could be a reason for the low dissolution ratio of Ca. In Al2O3-containing silicates, Al atoms could form [AlO4]5− and [AlO6]9− polyhedrons linked to [SiO4]4− tetrahedrons to form a complicated silicate network structure with a higher polymerization degree, which helps suppress the dissolution of Ca. The dissolution ratio of Ca is also inversely correlated to the overall polymerization degree in the silicate network structure. Using multivariate analysis, the dissolution ratio of Ca was predicted utilizing factors internal to the silicate structure (corrected basicity, polymerization degree of silicate network structure, lattice energy, and average nearest neighbor Ca–O distance). For both quasi-binary and quasi-ternary systems, the overall polymerization degree of silicate network strongly affects the dissolution of Ca, while the other factors only make slight contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Engstrom, D. Adolfsson, C. Samuelsson, and Å. Sandström: Miner. Eng., 2013, vol. 41, pp. 46–52.

    Article  Google Scholar 

  2. I. Strandkvist, B. Bjorkman, and F. Engstrom: Can. Metall. Q., 2015, vol. 54, pp. 446–54.

    Article  CAS  Google Scholar 

  3. W.H. Casey: Nat. Mater., 2008, vol. 7, pp. 930–2.

    Article  CAS  Google Scholar 

  4. H.R. Westrich, R.T. Cygan, W.H. Casey, C. Zemitis, and G.W. Arnold: Am. J. Sci., 1993, vol. 293, pp. 869–93.

    Article  CAS  Google Scholar 

  5. J. Schott, R.A. Berner, and E.L. Sjöberg: Geochim. Cosmochim. Acta., 1981, vol. 45, pp. 2123–35.

    Article  CAS  Google Scholar 

  6. X. Gao, N. Maruoka, S. Shigeru, and S. Kim: J. Sustain. Metall., 2015, vol. 1, pp. 304–13.

    Article  Google Scholar 

  7. R. Inoue and H. Suito: ISIJ Int., 2002, vol. 42, pp. 785–93.

    Article  CAS  Google Scholar 

  8. F. Ruan, S. Kawanishi, S. Sukenaga, and H. Shibata: ISIJ Int., 2020, vol. 60, pp. 419–25.

    Article  CAS  Google Scholar 

  9. M. Ha and S. Garofalini: J. Am. Ceram. Soc., 2017, vol. 100, pp. 563–73.

    Article  CAS  Google Scholar 

  10. Z. Zhu, X. Gao, S. Ueda, and S. Kitamura: ISIJ Int., 2019, vol. 59, pp. 1908–16.

    Article  CAS  Google Scholar 

  11. F. Ruan, S. Kawanishi, S. Sukenaga, and H. Shibata: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1071–84.

    Article  Google Scholar 

  12. K.H. Jost and B. Ziemer: Cem. Concr. Res., 1984, vol. 14, pp. 177–84.

    Article  CAS  Google Scholar 

  13. Q. Wang, X. Li, and X. Shen: J. Nanjing Tech. Univ. (Nat. Sci. Ed.)., 2017, vol. 39, pp. 39–45.

    Google Scholar 

  14. L. Pauling: J. Am. Chem. Soc., 1929, vol. 51, pp. 1010–26.

    Article  CAS  Google Scholar 

  15. Y. Sun, H. Wang, and Z. Zhang: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 677–87.

    Article  Google Scholar 

  16. B.O. Mysen, D. Virgo, and F.A. Seifert: Rev. Geophys. Space Phys., 1982, vol. 20, pp. 353–83.

    Article  CAS  Google Scholar 

  17. E.B. Pretorius, and R.C. Carlisle: Proc. 56th Electric Furnace Conference, Iron and Steel Society, Warrendale, PA, 1998, pp. 275–92.

  18. F.K. Crundwell: Hydrometallurgy., 2014, vol. 150, pp. 68–82.

    Article  CAS  Google Scholar 

  19. D. Sverjensky: Nat., 1992, vol. 358, pp. 310–3.

    Article  CAS  Google Scholar 

  20. M.A. Velbel: Am. J. Sci., 1999, vol. 299, pp. 679–96.

    Article  CAS  Google Scholar 

  21. O.W. Duckworth, R.T. Cygan, and S.T. Martin: Langmuir., 2004, vol. 20, pp. 2938–46.

    Article  CAS  Google Scholar 

  22. P. Atkins and T. Overton: Shriver and Atkins’ Inorganic Chemistry, 5th ed. W.H. Freeman and Co., New York, NY, 2010, pp. 77–94.

    Google Scholar 

  23. Sato & Toda Lab Homepage, LatEnergy software, http://mukiken.eng.niigata-u.ac.jp/chemsoft/x-raysoft/LatEnergy.html. Accessed 8 Aug 2020

  24. T. Oda, W.J. Weber, and H. Tanigawa: Comput. Mater. Sci., 2016, vol. 111, pp. 54–63.

    Article  CAS  Google Scholar 

  25. P.P. Ewald: Ann. Phys. (Berlin, Ger.)., 1995, vol. 64, pp. 253–87.

    Google Scholar 

  26. W.H. Casey and H.R. Westrich: Nature., 1992, vol. 355, pp. 157–9.

    Article  CAS  Google Scholar 

  27. W.H. Casey and G. Sposito: Geochim. Cosmochim. Acta., 1992, vol. 56, pp. 3825–30.

    Article  CAS  Google Scholar 

  28. W.H. Casey: J. Colloid Interface Sci., 1991, vol. 146, pp. 586–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by a Grant-in-Aid for Scientific Research (B) Grant (No. 19H02487) from the Japan Society for the Promotion of Science (JSPS). Thanks for the professional comments and technical support in TEM observation from Prof. Nagasako and Mr. Ito (Tohoku University). The authors would like to thank Mr. Hino and Mr. Akiyama (Tohoku University) for their technical support in using ICP-AES of the IMRAM Central Analytical Facility. The authors would also thank Prof. Sato (Niigata University) and Prof. Hasegawa (Tohoku University) for technical support in calculating the lattice energy. This study was partly supported by Tohoku University CINTS by Nanotechnology Platform Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (No. JPMX09F(A)-20-TU-0018).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakiko Kawanishi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 30, 2021; accepted November 3, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, F., Kawanishi, S., Sukenaga, S. et al. Inhibitory Effect of MgO, FeO, CaF2, and Al2O3 Additives on the Dissolution Behavior of Ca from Silicate Mineral Phases into Water. Metall Mater Trans B 53, 407–417 (2022). https://doi.org/10.1007/s11663-021-02376-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02376-3

Navigation