Skip to main content
Log in

Combustion-Aluminothermic Reduction of TiO2 to Produce Titanium Low Oxygen Suboxides

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Titanium suboxides with the general formula TinO2n−1 (n > 1.0), also referred to as Magnéli phases, have been the subject of numerous studies due to their unique properties. Titanium low oxygen suboxides located at n = 1 (TiO) or below (Ti6O, Ti3O and Ti2O) are no less important; however, there is a lack of research on the synthesis of such materials. Therefore, in this article, the combustion process in a TiO2-KClO4-kAl-Flux exothermic system for 0.5 ≤ k ≤ 4.0 (k is moles of Al) is investigated experimentally and thermodynamically to synthesize TinO2n−1 ingots in the 0.5 to 1.0 range of n. The synthesis temperatures and equilibrium reaction phases are calculated with and without a KClO4 booster and several fluxes (CaF2, NaF, CaO and Na3AlF6), which are used to melt the reaction product and achieve the self-separation of the TinO2n−1 ingot from the Al2O3-containing slag. The formation TiO, Ti2O, Ti3O and Ti6O phases is confirmed via XRD analysis and the effectiveness of fluxes is highlighted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Watanabe: Phys. Status Solidi C., 2009, vol. 6, pp. 260–3.

    Article  CAS  Google Scholar 

  2. M. Dewan, G. Zhang, and O. Ostrovski: Metall. Mater. Trans. B., 2008, vol. 40B, pp. 62–9.

    Google Scholar 

  3. V. Adamaki, F. Clemens, P. Ragulis, S.R. Pennock, J. Taylor, and C.R. Bowen: J. Mater. Chem., 2014, vol. A2, pp. 8328–32.

    Article  Google Scholar 

  4. M. Toyoda, T. Yano, B. Tryba, S. Mozia, T. Tsumura, and M. Inagaki: Appl. Catal. B., 2009, vol. 88, pp. 160–4.

    Article  CAS  Google Scholar 

  5. M. Radecka, A. Trenczek-Zajac, K. Zakrzewska, and M. Rekas: J. Power Sources., 2007, vol. 173, pp. 816–21.

    Article  CAS  Google Scholar 

  6. I.N. Martyanov, T. Berger, O. Diwald, S. Rodrigues, and K.J. Klabunde: J. Photochem. Photobiol A., 2010, vol. 212, pp. 135–41.

    Article  CAS  Google Scholar 

  7. K. Kolbrecka and J. Przyluski: Electrochim. Acta., 1994, vol. 39, pp. 1591–5.

    Article  CAS  Google Scholar 

  8. S. Andersson, B. Collen, U. Kuylenstierna, and A. Magnéli: Acta Chem. Scand., 1957, vol. 11, pp. 1641–52.

    Article  CAS  Google Scholar 

  9. T. Kubart, D. Depla, D.M. Martin, T. Nyberg, and S. Berg: Appl. Phys. Lett., 2008, vol. 92, p. 221501.

    Article  Google Scholar 

  10. A.A. Gusev, E.G. Avvakumov, A.Z. Medvedev, and A.I. Masliy: RSC Adv., 2016, vol. 6, pp. 79706–22.

    Article  Google Scholar 

  11. B. He, S. Chang, X. Huang, Q. Wang, A. Mei, and P.K. Shen: Nanoscale., 2015, vol. 7, pp. 2856–61.

    Article  CAS  Google Scholar 

  12. C. Hauf, R. Kniep, and G. Pfaff: J. Mater. Sci., 1999, vol. 34, pp. 1287–92.

    Article  CAS  Google Scholar 

  13. S. Tominaka, Y. Tsujimoto, Y. Matsushita, and K. Yamaura: Angew. Chem., 2011, vol. 50, pp. 7418–21.

    Article  CAS  Google Scholar 

  14. Y. Tsujimoto, Y. Matsushita, S. Yu, K. Yamaura, and T. Uchikoshi: J. Asian Ceram. Soc., 2015, vol. 3, pp. 325–33.

    Article  Google Scholar 

  15. M.W. Shah, Y. Zhu, X. Fan, J. Zhao, Y. Li, S. Asim, and C. Wang: Sci. Rep., 2015, vol. 5, p. 15804.

    Article  Google Scholar 

  16. L.R. Grabstanowicz, S. Gao, T. Li, R.M. Rickard, T. Rajh, D.J. Liu, and T. Xu: Inorg. Chem., 2013, vol. 52, pp. 3884–90.

    Article  CAS  Google Scholar 

  17. X. Liu, H. Xu, L.R. Grabstanowicz, S. Gao, Z. Lou, W. Wang, B. Huang, Y. Dai, and T. Xu: Catal. Today., 2014, vol. 225, pp. 80–89.

    Article  CAS  Google Scholar 

  18. W.-Q. Han and X.-L. Wang: Appl. Phys. Lett., 2010, vol. 97, p. 243104.

    Article  Google Scholar 

  19. B. Babic, J. Gulicovski, L. Gajić-Krstajić, N. Elezović, V.R. Radmilović, N.V. Krstajić, and L.M. Vračar: J. Power Sources., 2009, vol. 193, pp. 99–106.

    Article  CAS  Google Scholar 

  20. A. Rai, A. Valsaraj, H.C. Movva, A. Roy, R. Ghosh, S. Sonde, S. Kang, J. Chang, T. Trivedi, R. Dey, S. Guchhait, S. Larentis, L.F. Register, E. Tutuc, and S.K. Banerjee: Nano Lett., 2015, vol. 15, pp. 4329–36.

    Article  CAS  Google Scholar 

  21. V. Maneeratana, D. Portehault, J. Chaste, D. Mailly, M. Antonietti, and C. Sanchez: Adv. Mater., 2014, vol. 26, pp. 2654–8.

    Article  CAS  Google Scholar 

  22. K. Mimura, K. Matsumoto, and M. Isshiki: Mater. Trans., 2011, vol. 52, pp. 159–65.

    Article  CAS  Google Scholar 

  23. K. Mimura, J.W. Lim, J.M. Oh, C.S. Choi, S.W. Cho, M. Uchikoshi, and M. Isshiki: Mater. Lett., 2010, vol. 64, pp. 411–14.

    Article  CAS  Google Scholar 

  24. S. Natsui, T. Sudo, T. Kaneko, K. Tonya, D. Nakajima, T. Kikuchi, R.O. Suzuki: Sci Rep., 2018, vol. 8, p. 13114(1–6).

  25. H.S. Shin, J.M. Hur, S.M. Jeong, and K.Y. Jung: J. Ind. Eng. Chem., 2012, vol. 18, pp. 438–42.

    Article  CAS  Google Scholar 

  26. R. Bolivar and B. Friedrich: Proceedings of EMC, 2009, pp. 1–17.

  27. K. Choi, H. Choi, and I. Son: Metal. Mater. Trans B., 2017, vol. 48B, pp. 922–32.

    Article  Google Scholar 

  28. G.W. Fletcher: US Patent, 1979, No. 4169722.

  29. O. Kubaschewski and W.A. Dench: Prog. Mater. Sci., 1969, vol. 14, pp. 3–54.

    Article  Google Scholar 

  30. M. Maeda, T. Yahata, K. Mitgi, and T. Ikeda: Mater. Trans. JIM., 1993, vol. 34, pp. 503–603.

    Article  Google Scholar 

  31. J.C. Stoephasius, B. Friedrich, and J. Hammerschmidt: Die Metallurgen, Conference Paper, 2003.

  32. A.A. Shyriaev: Int. J. SHS., 1995, vol. 4, pp. 351–62.

    Google Scholar 

  33. J.R. Salasin and C. Rawn: Curr. Comput. Aid. Drug Des., 2017, vol. 7, pp. 1–25.

    Google Scholar 

  34. L. Kjellqvist, P. Mason, Q. Chen, and K. Wu: Proceedings of TMS (Liquid Metal Processing & Casting), 2013, pp. 21–28.

  35. X. Lu, G. Xia, J.P. Lemon, and Z. Yang: J. Power Sources., 2010, vol. 195, pp. 2431–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (20010585, High purity metal refining technology for titanium metal with zero toxic gas emission) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hyeon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 23. 2021; accepted September 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Nersisyan, H., Lim, KS. et al. Combustion-Aluminothermic Reduction of TiO2 to Produce Titanium Low Oxygen Suboxides. Metall Mater Trans B 52, 4012–4022 (2021). https://doi.org/10.1007/s11663-021-02316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02316-1

Navigation