Skip to main content

Advertisement

Log in

Hardness and Compressive Properties of Open-Cell Nickel Foam Reinforced by Nano-SiC Particles

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, nickel/SiC foam was produced by the co-electrodeposition method. The effect of nanoparticle concentration (0, 0.1, 0.5 and 1 g/L SiC) and the current type on the nickel foam properties has been investigated. Microscopic studies showed that the pulse current significantly reduces the thickness difference between the surface and the foam core. In addition, the columnar structure converts into equiaxed due to the addition of nanoparticles and pulse current. In the pulse current state, less agglomeration occurred, and more uniform dispersion of particles was observed. According to the compression test, the foam produced in the bath contains 0.1 g/L SiC, and in the pulse state, the strength and energy absorption are 4.9 MPa and 132 MJ/m3, respectively, which are higher than those for pure nickel foam. But the other composite foams are weaker than non-composite specimens. The low-strength over-agglomerated particles are cut at low stress levels, and therefore, reduce the composite material’s strength. The results of the microhardness test showed that, on average, pulse current increased the hardness by about 84 Vickers. The fine-grained, uniform dispersion of nanoparticles and the higher deposition of nanoparticles by pulse current increase this hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1. S.-F. Fan, T. Zhang, Y. Kun, H.-J. Fang, H.-Q. Xiong, Y.-L. Dai, D.-Y. Jiang, H.-L. Zhu (2017) Trans. Nonferrous Metals Soc. China 27:117–124

    Article  CAS  Google Scholar 

  2. L. Lin, S. Tang, S. Zhao, X. Peng and N. Hu, Electrochimica Acta, 2017, 228, 175-182.

    Article  CAS  Google Scholar 

  3. C.-H. Liao, P.-S. Hung, Y. Cheng, S.-Y. Chang and P.-W. Wu, Materials Letters, 2018, 215, 152-156.

    Article  CAS  Google Scholar 

  4. O. B. Olurin, D. S. Wilkinson, G. C. Weatherly, V. Paserin and J. Shu, Composites science and technology, 2003, 63, 2317-2329.

    Article  CAS  Google Scholar 

  5. T. T. Nguyen, D. Mohapatra, D. R. Kumar, M. Baynosa, S. Sahoo, J. Lee and J.-J. Shim, Electrochimica Acta, 2021, 367, 137226.

    Article  CAS  Google Scholar 

  6. G. Walther and and B. Kloeden, CELLMET Conference, 2008.

  7. P. Liu and K. Liang, Materials science and technology, 2000, 16, 575-578.

    Article  Google Scholar 

  8. P. Liu, H. Chen, K. Liang, S. Gu, Q. Yu, T. Li and C. Fu, Journal of applied electrochemistry, 2000, 30, 1183-1186.

    Article  CAS  Google Scholar 

  9. X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.-D. Bartout, P. Ienny, M. Croset and H. Bernet, Materials Science and Engineering: A, 2000, 289, 276-288.

    Article  Google Scholar 

  10. F. Barzegar, A. Salehi and A. Moloodi, Metallurgical and Materials Transactions B, 2019, 50, 1988-1996.

    Article  CAS  Google Scholar 

  11. A. Jung, H. Natter, R. Hempelmann, S. Diebels, M. R. Koblischka, U. Hartmann and E. Lach, ECS Transactions, 2010, 25, 165-172.

    Article  CAS  Google Scholar 

  12. A. Jung, M. R. Koblischka, E. Lach, S. Diebels and H. Natter, International Journal of Material Science, 2012, 2, 97-107.

    Google Scholar 

  13. B. Bouwhuis, J. McCrea, G. Palumbo and G. Hibbard, Acta materialia, 2009, 57, 4046-4053.

    Article  CAS  Google Scholar 

  14. H. Choe and D. C. Dunand, Materials Science and Engineering: A, 2004, 384, 184-193.

    Article  Google Scholar 

  15. A. Hodge and D. C. Dunand, Intermetallics, 2001, 9, 581-589.

    Article  CAS  Google Scholar 

  16. S. Dehgahi, R. Amini and M. Alizadeh, Surface and Coatings Technology, 2016, 304, 502-511.

    Article  CAS  Google Scholar 

  17. W. Jiang, L. Shen, M. Qiu, X. Wang, M. Fan and Z. Tian, Journal of Alloys and Compounds, 2018, 762, 115-124.

    Article  CAS  Google Scholar 

  18. H. Kazimierczak, K. Szymkiewicz, E. Gileadi and N. Eliaz, Coatings, 2019, 9, 93.

    Article  Google Scholar 

  19. Y. Zhang, F. Chen, X. Tang, H. Huang, M. Ni and T. Chen, Journal of Composite Materials, 2018, 52, 953-962.

    Article  CAS  Google Scholar 

  20. I. Duarte and J. M. Ferreira, Materials, 2016, 9, 79.

    Article  Google Scholar 

  21. M. Vaezi, S. Sadrnezhaad and L. Nikzad, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315, 176-182.

    Article  CAS  Google Scholar 

  22. P. Gyftou, E. Pavlatou and N. Spyrellis, Applied Surface Science, 2008, 254, 5910-5916.

    Article  CAS  Google Scholar 

  23. ISO 13314, ISO: Geneva, Switzerland, 2011.

  24. DIN 50134, German National Standard, 2008.

  25. J.H., 7902 standard, 2008.

  26. T. Lampke, B. Wielage, D. Dietrich and A. Leopold, Applied Surface Science, 2006, 253, 2399-2408.

    Article  CAS  Google Scholar 

  27. F. Ebrahimi, G. Bourne, M. S. Kelly and T. Matthews, Nanostructured materials, 1999, 11, 343-350.

    Article  CAS  Google Scholar 

  28. J. Amblard, I. Epelboin, M. Froment and G. Maurin, Journal of applied electrochemistry, 1979, 9, 233-242.

    Article  CAS  Google Scholar 

  29. E. Pavlatou, M. Raptakis and N. Spyrellis, Surface and coatings technology, 2007, 201, 4571-4577.

    Article  CAS  Google Scholar 

  30. ASTM E112-13; ASTM International: West Conshohocken, PA, USA, 2013.

  31. Y. Sun, R. Burgueño, W. Wang and I. Lee, International Journal of Solids and Structures, 2015, 54, 135-146.

    Article  CAS  Google Scholar 

  32. P. P. Dieter (1988) Crystal Research and Technology. Mc Graw-Hill Book Co., New York

    Google Scholar 

  33. T. Frade, V. Bouzon, A. Gomes, M. da SilvaPereira (2010) Surface Coatings Technol. 204:3592-3598

    Article  CAS  Google Scholar 

  34. P. I. Nemes, M. Lekka, L. Fedrizzi and L. M. Muresan, Surface and Coatings Technology, 2014, 252, 102-107.

    Article  CAS  Google Scholar 

  35. C. Kollia, N. Spyrellis, J. Amblard, M. Froment and G. Maurin, Journal of applied electrochemistry, 1990, 20, 1025-1032.

    Article  CAS  Google Scholar 

  36. 36. J. Fustes, A. Gomes, M. da Silva Pereira (2008) J. Solid State Electrochem. 12:1435-1443

    Article  CAS  Google Scholar 

  37. Y. Zhou, F. Xie, X. Wu, W. Zhao and X. Chen, Journal of Alloys and Compounds, 2017, 699, 366-377.

    Article  CAS  Google Scholar 

  38. S. Wang, N. Zhou and F. C. Walsh, Transactions of the IMF, 2016, 94, 274-282.

    Article  CAS  Google Scholar 

  39. S.-C. Wang and W.-C. J. Wei, Journal of materials research, 2003, 18, 1566-1574.

    Article  CAS  Google Scholar 

  40. M. Habibnejad-Korayem, R. Mahmudi, H. Ghasemi and W. Poole, Wear, 2010, 268, 405-412.

    Article  CAS  Google Scholar 

  41. K. Nie, K. Deng, X. Wang and K. Wu, Journal of Materials Research, 2017, 32, 2609.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Barzegar or A. Moloodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on October 24, 2020; June 28, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, E.Z., Barzegar, F., Moloodi, A. et al. Hardness and Compressive Properties of Open-Cell Nickel Foam Reinforced by Nano-SiC Particles. Metall Mater Trans B 52, 3439–3446 (2021). https://doi.org/10.1007/s11663-021-02273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02273-9

Navigation