Skip to main content
Log in

Gas–Liquid Reduction Behavior of Hematite Ore Fines in a Flash Reduction Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Novel ironmaking technologies that directly use the raw materials of iron ore fines without preprocessing have greater benefits in environmental protection and energy conservation. In this work, the gas–liquid reduction behavior and kinetic mechanism of hematite ore fines in the flash reduction processes are investigated using a high-temperature drop tube furnace. Morphological observations show the hematite ores to be completely molten at 1700 K and above. The metallic iron is enwrapped in the liquid wüstite and the aggregation state of metallic iron inside the wüstite is highly dependent on the reaction temperature. Many small irregularly shaped iron particles are found to be scattered in the liquid wüstite at 1650 K to 1700 K, while only one big spherical iron particle is observed at 1700 K to 1800 K. The gas–liquid reduction reaction always occurs at the surface of the liquid wüstite particle, and the kinetic analysis reveals that the interfacial chemical reaction at the liquid wüstite surface is the rate-controlling step during the reduction process. The chemical kinetics limiting rate equation of gas–liquid reduction is determined. The activation energies of the gas–liquid reaction calculated by the model-fitting and the model-free approaches are 148 and 143 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Liu, L. Chen, X. Qin and F. Sun: Energy, 2015, vol. 93, pp. 10-19.

    Article  Google Scholar 

  2. P. Michaelis, T. Jackson and R. Clift: Energy, 1998, vol.23, pp. 213-20.

    Article  Google Scholar 

  3. W. Sun, J. Cai, H. Mao and D. Guan: J Iron Steel Res Int., 2011, vol. 18, pp. 31-6.

    Article  CAS  Google Scholar 

  4. Y. You, Q. Hou and Z. Luo: Steel Res. Int, 2016, vol. 87, pp. 1543-51.

    Article  CAS  Google Scholar 

  5. D. Stephens, M. Tabib and M. Schwarz: Prog Comput Fluid Dyn, 2012, vol. 12, pp. 196-06.

    Article  CAS  Google Scholar 

  6. W. Zhang, J. Zhang and Z. Xue: Energy, 2017, vol. 121, pp. 135-46.

    Article  CAS  Google Scholar 

  7. A. Habermann, F. Winter, H. Hofbauer, J. Zirngast and J. L. Schenk: ISIJ Int., 2000, vol. 40, pp. 935-42.

    Article  CAS  Google Scholar 

  8. K. Meijer, C. Zeilstra, C. Teerhuis, M. Ouwehand and J. V. D. Stel: Trans. Indian Inst. Met., 2013, vol. 66, pp. 475-81.

    Article  CAS  Google Scholar 

  9. M. A. Quader, S. Ahmed, S. Z. Dawal and Y. Nukman: Renew. Sustain. Energy Rev., 2016, vol. 55, pp. 537-49.

    Article  Google Scholar 

  10. A. Orth, N. Anastasijevic and H. Eichberger: Miner Eng., 2007, vol. 20, pp. 854-61.

    Article  CAS  Google Scholar 

  11. H. K. Pinegar, M. S. Moats and H. Y. Sohn: Steel Res. Int., 2011, vol. 82, pp. 951-63.

    Article  CAS  Google Scholar 

  12. H. Y. Sohn: Steel Times Int., 2007, vol. 31, pp. 68-72.

    Google Scholar 

  13. H. Y. Sohn, S. Roy and D. Q. Fan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2037-46.

    Article  Google Scholar 

  14. R. Sarka and H. Y. Sohn: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2063-76.

    Article  Google Scholar 

  15. Q. Wang, G. Li, W. Zhang and Y. Yang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2006-16.

    Article  Google Scholar 

  16. B. Weiss, J. Sturn, S. Volglsam, H. Strobl, H. Mail, F. Winter and J. Schenk: Ironmaking Steelmaking., 2011, vol. 38, pp. 65-73.

    Article  CAS  Google Scholar 

  17. J. Pang, P. Guo and P. Zhao: Iron Steel Res. Int., 2015, vol. 22, pp. 391-95.

    Article  Google Scholar 

  18. H. Wang and H. Y. Sohn: ISIJ Int., 2015, vol. 55, pp. 706-08.

    Article  CAS  Google Scholar 

  19. H. Wang and H. Y. Sohn: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1133-45.

    Google Scholar 

  20. F. Chen, Y. Mohassab, T. Jiang and H. Y. Sohn: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1133-45.

    Article  Google Scholar 

  21. F. Chen, Y. Mohassab, S. Zhang and H. Y. Sohn: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1716-28.

    Article  Google Scholar 

  22. F. Tsukihashi, K. Kato, K. Otsuka and T. Soma: Trans. Iron Steel Inst. Jpn. 1982, vol. 22, pp. 688-95.

    Article  Google Scholar 

  23. S. Hayashi and Y. Iguchi, ISIJ Int. 1994, vol. 34, pp. 555-61.

    Article  CAS  Google Scholar 

  24. Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer and R. Boom: Ironmaking. Steelmaking, 2015, vol. 42, pp. 763-73.

    Article  CAS  Google Scholar 

  25. A. A. Barde, J. K. Klausner and R. Mei: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 10103-19.

    Article  CAS  Google Scholar 

  26. M. H. Jeong, D. H. Lee and W. Bae: Int. J. Hydrogen Energy, 2015, vol. 40, pp. 2613-20.

    Article  CAS  Google Scholar 

  27. D. R. Gaskell: An Introduction to Transport Phenomena in Materials Engineering, Macmillan Publishing Company, New York, USA 2013.

    Google Scholar 

  28. Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer and R. Boom: ISIJ Int., 2015, vol. 55, pp. 952-60.

    Article  CAS  Google Scholar 

  29. K. Nozawa, M. Shimizu and S. Inaba: Trans. Iron Steel Inst. Jpn. 1992, vol. 79, pp. 443-48.

    Article  Google Scholar 

  30. Y. Guo, L. Jia, B. Kong, S. Zhang, F. Zhang and H. Zhang: Appl. Surf. Sci, 2017, vol. 409, pp. 367-74.

    Article  CAS  Google Scholar 

  31. P. Hu, G. Liu, B. Hu, W. Ma, Y. Zhang and J. Liu: J. Univ. Sci. Technol. Beijing, 2013, vol. 35, pp. 1174-80.

    CAS  Google Scholar 

  32. B. Verdes, I. Chira, M. Virgolici and V. Moise: U. P. B. Sci. Bull, 2012, vol. 74, pp. 257-68.

  33. L. Xing, Z. Zou, Y. Qu, L. Shao and J. Zou: Steel Res. Int. 2019, https://doi.org/10.1002/srin.201800311.

    Article  Google Scholar 

  34. M.F. Rau, D. Rieck, J.W. Evans: Metall. Mater. Trans. B, 1987, vol. 18B, pp. 257–78.

    Article  CAS  Google Scholar 

  35. A. Khawam and D. R. Flanagan: J. Pharm. Sci., 2006, vol. 95, pp. 472-98.

    Article  CAS  Google Scholar 

  36. A. Khawam and D. R. Flanagan: J. Phys. Chem. B, 2006, vol. 110, pp. 17315-28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grants Nos. 51504056, 51604068 and 51574064), and the Fundamental Research Funds for the Central Universities (Grant No. N182504012).

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingxia Qu or Zongshu Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 17, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, L., Qu, Y., Wang, C. et al. Gas–Liquid Reduction Behavior of Hematite Ore Fines in a Flash Reduction Process. Metall Mater Trans B 51, 1233–1242 (2020). https://doi.org/10.1007/s11663-020-01811-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01811-1

Navigation