Skip to main content
Log in

Gas-Enhanced Ultrahigh-Shear Mixing: An Application to Molten Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new mixing technology that explores an integration of ultrahigh shearing with gas injection, directly into the mixer shear zone, has been applied to molten aluminum alloys. The refining and homogenizing effects were assessed through microscopic observations of solidified structures. For the set of process parameters applied, the ultrahigh shear alone caused structural refinement, which doubled the sole effect of gas flotation. Combining ultrahigh shear with gas injection magnified the structural refinement, which substantially exceeded the individual effects, caused by gas flotation and ultrahigh shearing. In addition to matrix grain-size reduction by almost two orders of magnitude, the complex intermetallic compounds, being inherently coarse in conventional castings, were also refined. The results confirmed our earlier observations made through transparent media that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultrahigh shear, leading to intensive cavitation, generated in the cylindrical rotor–stator apparatus, drastically enhanced the treatment outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Harnby, M. Edwards and A. Nienow, Mixing in the Process Industries, Oxford: Reed Educational and Professional Publishing Ltd., 1985.

    Google Scholar 

  2. F. Czerwinski, Metall. Mater. Trans. B, 2017, vol. 48, no. 1, pp. 367-393.

    Article  Google Scholar 

  3. F. Czerwinski, Adv. Mater. Process., 2016, vol. 174, pp. 19-22.

    Google Scholar 

  4. L. Wang, Y. Cui, B. Li, S. Yang, R. Li, Z. Liu, R. Vaitai and W. Fei, RSC Advances, 5:51193-51200, 2015.

    Article  CAS  Google Scholar 

  5. F. Czerwinski and G. Birsan, Metall. Mater. Trans. B, 2017, vol. 48, p. 983–992.

    Article  Google Scholar 

  6. F. Czerwinski, W. Kasprzak, D. Sediako, D. Emadi, S. Shaha, J. Friedman and D. Chen, Adv. Mater. Process., 2016, vol. 174, no. 3, pp. 16-20.

    Google Scholar 

  7. S. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman and D. Chen, Thermochimica Acta, 2014, vol. 595, pp. 1-16.

    Article  Google Scholar 

  8. M. Easton, C. Davidson and D. StJohn1, Grain Morphology of As-Cast Wrought Aluminium Alloys, in Proceedings of the 12th International Conference on Aluminium Alloys, September 5–9, 2010, Yokohama, Japan, The Japan Institute of Light Metals.

  9. N. Belov, A. Aksenov and D. Eskin, Iron in Aluminium Alloys: Impurity and Alloying Element, London and New York: CRC Press, 2002.

    Book  Google Scholar 

  10. S. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman and D. Chen, Mater. Sci. Eng. A, 2016, vol. 652, pp. 353-364.

    Article  CAS  Google Scholar 

  11. S. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman and D. Chen, Metall. Mater. Trans. A, 2015, vol. 46A, p. 3063.

    Article  Google Scholar 

  12. M. Saternus, J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, no. 2, pp. 285-290.

    Google Scholar 

  13. Z. Fan, Y. Zuo and B. Jiang, Mater. Sci. Forum, 2011, vol. 690, pp. 141-144.

    Article  CAS  Google Scholar 

  14. C. R. &. S. Company: Ultra-high shear mixing and deagglomeration. www.mixers.com. Accessed 25 May 2016.

  15. L. Wang, H. Lee and P. P. Hayes, ISIJ Int., 1996, vol. 36, p. 7–16.

    Article  CAS  Google Scholar 

  16. V. Rundquist and K. Gill: Ultrasonic degassing of molten metals. US Patent 8,574,336 B2, 5 November 2013.

  17. J. Tommaney: Method and apparatus for introducing gas into molten metal baths. US Patent 4,758,269, 19 July 1988.

  18. F. Tremblay and G. Dube: Jet flow device for injecting gas into molten metal and process. US Patent 5,340,379, 23 August 1994.

  19. J. Wannasin, R. Martinez and M. Flemings, Scripta Materialia, 2006, vol. 55, pp. 115-118.

    Article  CAS  Google Scholar 

  20. B. Klaasen, F. Verhaeghe and B. Blanpain, “A study of gas bubbles in liquid mercury in a vertical Hele-Shaw cell,” Experiments in Fluids, 2014, vol. 1652, p. 55.

    Google Scholar 

  21. G. Kuiper: Physics of cavitation: GAS CONTENT,” TUDelft OpenCourseWare. https://ocw.tudelft.nl/courses/cavitation-ship-propellers. Accessed 15 Jan 2010.

  22. Brennen, C.E., Cavitation and Bubble Dynamics, Oxford, UK: Oxford University Press, 1995.

    Google Scholar 

  23. G. I. Eskin and D. G. Eskin, Ultrasonic Treatment of Light Alloy Melts, CRC Press, Boca Raton, 2014.

    Book  Google Scholar 

  24. C. Vives, JOM-e, 50:1-9, 1998.

    Google Scholar 

  25. Y. Zhang, N. Ma, H. Yi, S. Li and H. Wang, Mater. Design, 2006, vol. 27, no. 9, p. 794.

    Article  CAS  Google Scholar 

  26. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine and I. I.L. Svensson, Mater. Design, 2012, vol. 36, p. 522–528.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the ecoENERGY Innovation Initiative (ecoEII EETR 027) and Program of Energy Research and Development (PERD) of Natural Resources Canada. The authors would like to thank P. Newcombe, D. McFarlan, D. Saleh and H. Webster from CanmetMATERIALS for synthesis of the proprietary Al alloy and R. Zavadil for metallography work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Czerwinski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 9, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czerwinski, F., Benkel, F. & Birsan, G. Gas-Enhanced Ultrahigh-Shear Mixing: An Application to Molten Aluminum Alloys. Metall Mater Trans B 51, 1079–1087 (2020). https://doi.org/10.1007/s11663-020-01803-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01803-1

Navigation