Skip to main content
Log in

Microsegregation Measurement: Methods and Applications

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Microsegregation is chemical variation at the microstructural level in a solidified ingot, which can cause undesirable effects on material properties. Its formation is driven by different levels of solute elemental solubility between solid and liquid phases, resulting in solute buildup or depletion in the liquid phase during solidification. Characterization of microsegregation can be essential for understanding its formation and removing it through heat treatment. Measurement is frequently carried out via scanning electron microscope (SEM), though metallographic analysis, mechanical testing and optical radiography have been used. SEM analysis can consist of point measurements on single dendrites, line scans across or along dendrites, elemental maps, and extended line-based or grid-based analyses extending over many dendrites, which can generate large amounts of data. Line-based or grid-based data can be analyzed using scatterplots of element concentrations to visualize segregation behavior and sorting/ranking of data by a single element or a combination of elements, to give compositional profiles as a function of extent of solidification. For both qualitative and quantitative analyses, effects of phase transformations and secondary phases need to be considered as well as sorting of measurement errors when generating compositional profiles. Applications of analysis include determination of partition ratios, examination of solute–element interactions, determination of effects of cooling rate and back diffusion, applications to freckling studies, validations of modeling, and development of heat-treatment profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. ®CMSX is a Registered Trademark of Cannon–Muskegon Corporation.

  2. ® CMSX-4 is a Registered Trademark of Cannon–Muskegon Corporation.

References

  1. 1. W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications, Switzerland, 1989, pp. 15-16.

    Google Scholar 

  2. 2. E.T. Turkdogan, Fundamentals of Steelmaking, The Institute of Materials, Cambridge, 1996, pp. 307-314

    Google Scholar 

  3. 3. O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry 6 th Edition, Pergamon Press, Tarrytown, NY, 1993, pp. 278.

    Google Scholar 

  4. 4. J.K. Brimacombe, K. Sorimachi, Metall. Trans. B, 1977, vol. 8B, pp. 489-505.

    CAS  Google Scholar 

  5. 5. G. Krauss, Metall. Mater. Trans. B, 2003, vol. 34B, pp. 781-792.

    CAS  Google Scholar 

  6. 6. J.S. Kirkaldy, J. von Destinon-Forstmann, R.J. Brigham, Can. Met. Q., 1962, vol. 1, pp. 59-81.

    CAS  Google Scholar 

  7. 7. M. Maalekian, H. Azizi-Alizamini, M. Militzer, Metall. Mater. Trans. A, 2016, vol. 47A, pp. 608-622.

    Google Scholar 

  8. J.L. Walker and T.F. Sawyer: US3753790, 21 August 1973.

  9. J.L. Walker and T.F. Sawyer: US3783032, 1 January 1974.

  10. E.A. Ault: US4717432, 5 January 1988.

  11. 11. R.G. Ward, J. Iron Steel Inst., 1958, vol. 188, pp. 337-342.

    CAS  Google Scholar 

  12. 12. R.G. Ward, J. Iron Steel Inst., 1965, vol. 203, pp. 930-932.

    CAS  Google Scholar 

  13. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, and J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed., Springer, New York, 2003, pp. 10–17 and 402–16.

    Google Scholar 

  14. 14. M.N. Gungor, Metall. Trans. A, 1989, vol. 20A, pp. 2529-2533.

    CAS  Google Scholar 

  15. 15. J.E. Hilliard, J.W. Cahn, Trans. Metall. Soc. AIME, 1961, vol. 221, pp. 344-352.

    CAS  Google Scholar 

  16. E.A. Feest, G. McHugh, D.O. Morton, L.S. Welch, and I.A. Cook: Solidif. Technol. Foundry Cast House, Proc. Int. Conf., 1980, pp. 232–39.

  17. 17. C. Selig, J. Lacaze, Metall. Mater. Trans. B, 2000, vol. 31B, pp. 827-836.

    CAS  Google Scholar 

  18. 18. J. Lacaze, G. Lesoult, Mater. Sci. Eng., 1993, vol. A173, pp. 119-122.

    Google Scholar 

  19. 19. J. Lacaze, G. Lesoult, ISIJ Int., 1995, vol. 35, pp. 658-664.

    CAS  Google Scholar 

  20. 20. F.Y. Xie, T. Kraft, Y. Zuo, C.H. Moon, Y.A. Chang, Acta Metall., 1999, vol. 47, pp. 489-500.

    CAS  Google Scholar 

  21. 21. X. Yan, F. Xie, M. Chu., Y.A. Chang, Mater. Sci. Eng. A, 2001, vol. A302, pp. 268-274.

    CAS  Google Scholar 

  22. 22. X. Yan, S. Chen, F. Xie, Y.A. Chang, Acta Mater., 2002, vol. 50, pp. 2199-2207.

    CAS  Google Scholar 

  23. 23. F. Xie, X. Yan, L. Ding, F. Zhang, S. Chen, M.G. Chu, Y.A. Chang, Mater. Sci. Eng., 2003, vol. A355, pp. 144-153.

    Google Scholar 

  24. 24. E.C. Kurum, H.B. Dong, J.D. Hunt, Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3103-3110.

    CAS  Google Scholar 

  25. 25. J. Lacaze, P. Benigni, A. Howe, Adv. Eng. Mater., 2003, vol. 5, pp. 37-46.

    CAS  Google Scholar 

  26. 26. B.K. Dhindaw, T. Antonsson, J. Tinoco, H. Fredriksson, Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2869-2879.

    CAS  Google Scholar 

  27. 27. S. Huang, L. Peluso, D. Backman, in Solidification 1999, Eds. W.H. Hofmeister, J.R. Rogers, N.B. Singh, S.P. Marsh, P.W. Vorhees, The Minerals, Metals and Materials Society, 1999, p. 163-172.

    Google Scholar 

  28. 28. N. D’Souza, M. Lekstrom, H.B. Dong, Mater. Sci. Eng A, 2008, vol. 490, pp. 258-265.

    Google Scholar 

  29. R Core Team: in R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2017. https://R-project.org/.

  30. 30. M.S.A. Karunaratne, D.C. Cox, P. Carter, R.C. Reed, in Superalloys 2000, Eds. T.M. Pollack, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, The Minerals, Metals and Materials Society, 2000, p. 263-272.

    Google Scholar 

  31. 31. M. Ganesan, L. Thuinet, D. Dye, P.D. Lee, Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2191-2204.

    CAS  Google Scholar 

  32. 32. M. Ganesan, L. Thuinet, D. Dye, P.D. Lee, Metall. Mater. Trans. B, 2007, vol. 38B, pp. 557-566.

    CAS  Google Scholar 

  33. 33. D. Mirković, R. Schmid-Fetzer, Metall. Mater. Trans. A, 2009, vol. 40A, pp. 958-973.

    Google Scholar 

  34. 34. M.A. Martorano, J.D.T. Capocchi, Metall. Mater. Trans. A, 2000, vol. 31A, pp. 3137-3148.

    CAS  Google Scholar 

  35. A. Wagner, N. D’Souza, B.A. Shollock, and M. McLean: in 2001 Int. Symp. Liq. Met. Process. Cast., A. Mitchell and J. Van Den Avyle, eds., The Vacuum Society, 2001, pp. 301–13.

  36. 36. W. Yang, W. Chen, K-M. Chang, S. Mannan, J. DeBarbadillo, Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2569-2574.

    CAS  Google Scholar 

  37. 37. A. Hazotte, J.S. Lecomte, J. Lacaze, Mater. Sci. and Eng. A 2005, vols. 413-414, pp. 223-228.

    Google Scholar 

  38. 38. J. Zollinger, D. Daloz, Mater. Charact., 2011, vol. 62, pp. 1058-1065.

    CAS  Google Scholar 

  39. 39. N.K. Datta and N.N. Engel, Trans. Am. Foundry Soc., 1976, vol. 84, pp. 431-436.

    CAS  Google Scholar 

  40. 40. P.C. Liu and C.R. Loper, Trans. Am. Foundry Soc., 1984, vol. 92, pp. 289-295.

    CAS  Google Scholar 

  41. 41. K.L. Hayrynen, D.J. Moore, K.B. Rundman, Trans. Am. Foundry Soc., 1988, vol. 96, pp. 619-632.

    CAS  Google Scholar 

  42. J. Chipman: in Basic Open Hearth Steelmaking, G. Derge, ed., The American Institute of Mining, Metallurgical, and Petroleum Engineers, Ann Arbor, MI, 1964, Ch. 16, pp. 644.

  43. 43. R. Boeri and F. Weinberg, Trans. Am. Foundry Soc., 1989, vol. 97, pp. 179-184.

    Google Scholar 

  44. 44. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, Jr., W.F. Hammetter, Metall. Mater. Trans. A, 1989, vol. 20A, pp. 2149-2158.

    CAS  Google Scholar 

  45. S.N. Tewari, M.V. Kumar, J.E. Lee, and P.A. Curreri: NASA TM-103518, November 1990.

  46. 46. G.E. Fuchs, Mater. Sci. Eng., 2001, vol. A300, pp. 52-60.

    Google Scholar 

  47. B. Korojy, L. Ekbom, and H. Fredriksson: Adv. Mater. Sci. Eng., Article ID 627937, 2009

  48. 48. P.M.N. Ocansey, D.R. Pourier, J. Mater. Sci. Eng. A, 1996, vol. A211, pp. 10-14.

    CAS  Google Scholar 

  49. 49. P.K. Sung, D.R. Pourier, Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2173-2181.

    CAS  Google Scholar 

  50. L. Nastac, J. Chou, and Y. Pang: in Proc. 1999 Int. Symp. Liq. Met. Process. Cast, A. Mitchell, L. Ridgway, and M. Baldwin, eds., American Vacuum Society, 1999, pp. 207–23.

  51. K.B. Rundman: AFS Special Report, 1998.

  52. 52. K.L. Zeisler-Mashl, B.J. Pletka, in Superalloys 1992, Eds. S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom, The Minerals Metals & Materials Society, 1992, pp. 175-184.

    Google Scholar 

  53. N. D’Souza, B.A. Shollock, and M. McLean: in Solidif. Process. 1997 Proc. 4 th Decenn. Int. Conf. Solidif. Process., J. Beech and H. Jones, eds., The University of Sheffield, 1997, pp. 316–20.

  54. 54. J. Koßmann, C.H. Zenk, I. Lopez-Galilea, S. Neumeie, A. Kostka, S. Huth, W. Theisen, M. Göken, R. Drautz, T. Hammerschmidt, J. Mater. Sci., 2015, vol. 50, pp. 6329-6338.

    Google Scholar 

  55. J.E. Stead, J. Iron Steel Inst., 1915, vol. 91, 1, pp. 140-198.

    Google Scholar 

  56. 56. A. Sauveur, The Metallography and Heat Treatment of Iron and Steel 2 nd Edition, Sauveur and Boylston, The University Press, Cambridge, USA, 1916, pp. 153-157.

    Google Scholar 

  57. 57. A. Kohn and J. Doumerc, Rev. Met., 1955, vol. 52, 3, pp. 249-257.

    CAS  Google Scholar 

  58. 58. J.D. Lavender, F.W. Jones, J. Iron Steel Inst., 1949, vol. 163, pp. 14-17.

    CAS  Google Scholar 

  59. 59. R. Castaing, J. Philibert, C. Crussard, Transactions AIME, 1957, vol. 209, pp. 389-394.

    Google Scholar 

  60. T.B. Smith, J.S. Thomas, R. Goodall, J. Iron Steel Inst., 1963, vol. 201, 7, pp. 602-609.

    CAS  Google Scholar 

  61. M.C. Flemings, Poirier, Barone, H.D. Brody, J. Iron Steel Inst., 1970, vol. 208, pp. 371-381.

    CAS  Google Scholar 

  62. 62. R.P. Smith, Trans. Met. Soc. AIME, 1960, vol. 208, pp. 62-64.

    Google Scholar 

  63. 63. Z. Morita, T. Tanaka, Trans Iron Steel Inst. Jpn., 1983, vol. 23, 824-833.

    CAS  Google Scholar 

  64. 64. A. Kagawa, K. Iwata, A.A. Nofal, T. Okamoto, Mater. Sci. Technol., 1985, vol. 1, 9, pp. 678-683.

    CAS  Google Scholar 

  65. A. Türkeli and D.H. Kirkwood: in Solidif. Process. 1997 Proc. 4th Decenn. Int. Conf. Solidif. Process., J. Beech and H. Jones, eds., The University of Sheffield, 1997, pp. 308–11.

  66. 66. W. Yang, W. Chen, K. Chang, S. Mannan, J. DeBarbadillo, Superalloys 2000, Eds. T.M. Pollack, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, The Minerals, Metals and Materials Society, 2000, p. 75-84.

    Google Scholar 

  67. R.A. Hobbs, Tin, S., C.M.F. Rae, Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2761-2773.

    CAS  Google Scholar 

  68. 68. H.T. Pang, L. Zhang, R.A. Hobbs, H.J. Stone, C.M.F. Rae, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3264-3282.

    Google Scholar 

  69. 69. A. Heckl, R. Rettig, R.F. Singer, Metall. Mater. Trans. A, 2010, vol. 41A, 202-211.

    CAS  Google Scholar 

  70. 70. J.A. Sarreal, G.J. Abbaschian, Metall. Trans. A, 1986, vol. 17A, pp. 2063-2073.

    CAS  Google Scholar 

  71. 71. T. Sawai, Y. Ueshima, S. Mizoguchi, ISIJ Int., 1990, vol. 30, 7, pp. 520-528.

    CAS  Google Scholar 

  72. 72. E.A. Kumoto, R.O. Alhadeff, M.A. Martorano, Mater. Sci. Technol., 2002, vol. 18, pp. 1001-1006.

    CAS  Google Scholar 

  73. 73. D. Mirkovic and R. Schmid-Fetzer, Metall. Mater. Trans. A, 2009, vol. 40A, pp. 974-981.

    CAS  Google Scholar 

  74. 74. T.W. Clyne, W. Kurz, Metall. Trans. A, 1981, vol. 12A, pp. 965-971

    Google Scholar 

  75. 75. X. Zheng, A.A. Luo, C. Zhang, J. Dong, R.A. Waldo, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3239-3248.

    Google Scholar 

  76. 76. H.D. Brody, M.C. Flemings, Trans. Met. Soc. AIME, 1966, vol. 236, pp. 615-624.

    CAS  Google Scholar 

  77. 77. T.W. Clyne, M. Wolf, W. Kurz, Metall. Trans. B, 1982, vol. 13B, pp, 259-266.

    CAS  Google Scholar 

  78. 78. A. Thirumalai, A. Akhtar, R.C. Reed, Mater. Sci. Technol., 2006, vol. 22, pp. 1-13.

    CAS  Google Scholar 

  79. D. Zhang and M. Strangwood: in Proc. 2013 Int. Symp. Liq. Met. Process. Cast., M.J. Krane, A. Jardy, R.L. Williamson, and J.J. Beaman, eds., TMS, 2013, pp. 321–27.

  80. 80. T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima, H. Esaka, Trans Iron Steel Inst. Jpn.,1984, vol. 24, pp. 873-882.

    Google Scholar 

  81. 81. I. Ohnaka, Trans Iron Steel Inst. Jpn., 1986, vol. 26, pp. 1045-1051.

    CAS  Google Scholar 

  82. 82. S. Kobayashi, Trans Iron Steel Inst. Jpn., 1988, vol. 28, pp. 728-735.

    CAS  Google Scholar 

  83. 83. Y.-M. Won, B.G. Thomas, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755-1767.

    CAS  Google Scholar 

  84. 84. V.R. Boller, C. Beckermann, Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2183-2189.

    Google Scholar 

  85. 85. K.S. Yeum, V. Laxmanan, D.R. Poirier, Metall. Trans. A, 1989, vol. 20A, pp. 2847-2856.

    CAS  Google Scholar 

  86. 86. L. Nastac and D.M. Stefanescu, Metall. Mater. Trans. A, 1993, vol. 24A, pp. 2107-2118.

    CAS  Google Scholar 

  87. 87. M. Paliwal, D.H. Kang, E. Essadiqi, I. Jung, Metall. Mater. Trans. B, 2014, vol. 45A, pp. 3308-3320.

    Google Scholar 

  88. 88. Y. Huang, M. Long, P. Liu, D. Chen, H. Chen, L. Gui, T. Liu, S. Yu, Metall. Mater. Trans. B, 2017, 48B, pp. 2504-2515.

    Google Scholar 

  89. P. Lynch, T. Rigby, and R. Abrahams: in AISTech 2017 Proc. 2017, AIST, pp. 2873–79.

  90. 90. H.E. Lippard, C.E. Campbell, T. Björklind, U. Borggren, P. Kellgren, V.P. Dravid, G.B. Olson, Metall. Mater. Trans. B, 1998, vol. 29B, pp. 205-210.

    CAS  Google Scholar 

  91. 91. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad, 2002, vol. 26, pp. 273-312.

    CAS  Google Scholar 

  92. 92. H. Larsson, Calphad, 2014, vol. 47, pp. 1-8.

    CAS  Google Scholar 

  93. 93. P.D. Jablonski, C.J. Cowen, Metall. Mater. Trans. B, 2009, vol. 40B, pp. 182-186.

    CAS  Google Scholar 

  94. 94. P.D. Jablonski, J.A. Hawk, C.J. Cowen, P.J. Maziasz, JOM, 2012, vol. 64, pp. 271-279.

    CAS  Google Scholar 

  95. 95. D.H. Bechetti, J.N. Dupont, J.J. deBarbadillo, B.A. Baker, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3051-3063.

    Google Scholar 

  96. 96. Y. Zhang, W.Q. Chen, L. Chen, Q.Z. Yan, Z. Yao, Metall. Res. Technol., 2015, vol. 112, 303, pp. 1-9.

    Google Scholar 

  97. 97. I. Steinbach, B. Böttger, J. Eiken, N. Warnken, S.G. Fries, J. Phase Equilib. Diffus., 2007, vol. 28, No. 1, pp. 101.

    CAS  Google Scholar 

  98. 98. N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries, I. Steinbach, Acta Metall, 2009, 57, pp. 5862-5875.

    CAS  Google Scholar 

  99. 99. N. Warnken, J. Phase Equilib. Diffus, 2016, vol. 37, No. 1, pp. 100-107.

    CAS  Google Scholar 

  100. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Ann. Rev. Mater. Res., vol. 23, 2002, ppl 163-194.

    Google Scholar 

  101. 101. L.-Q. Chen, Ann. Rev. Mater. Res., vol. 32, 2002, pp. 113-140.

    CAS  Google Scholar 

  102. 102. I. Lopez-Galilea, S. Huth, S.G. Fries, N. Warnken, I. Steinbach, W. Theisen, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5153-5164.

    Google Scholar 

  103. 103. R. Rettig, N.C. Ritter, F. Müller, M.F. Martin, R.F. Singer, Metall. Mater. Trans. A, 2015, 46A, pp. 5842-5855.

    Google Scholar 

  104. 104. C. Bos, M.C. Mecozzi, J. Sietmsa, Comput. Mater. Sci., 2010, vol. 48, pp. 692-699.

    CAS  Google Scholar 

  105. 105. C. Bos, M.C. Mecozzi, D.N. Hanlon, M.P. Aarnts, J. Sietmsa, Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3602-3610.

    Google Scholar 

  106. 106. D. Raabe, Cellular, Lattice Gas, and Boltzmann Automata, in Continuum Scale Simulation of Engineering Materials: Fundamentals – Microstructures – Process Applications, D. Raabe, F. Roters, F. Barlat, L.-Q. Chen, eds., Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, 2004, pp. 57-76.

    Google Scholar 

  107. 107. E.J. Pickering, C. Chesman, S. Al-Bermani, M. Holland, P. Davies, J. Talamantes-Silva, Metall. Mater. Trans. B, 2015, 46B, pp. 1860-1874.

    Google Scholar 

  108. 108. S. Tin, T.M. Pollock, W.T. King in Superalloys 2000, Eds. T.M. Pollack, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, The Minerals, Metals and Materials Society, 200, pp. 201-210.

    Google Scholar 

  109. 109. S.N. Monteiro and S. Paciornik, JOM, 2016, vol. 69, 1, pp. 84-92.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Mario Epler and Carpenter Technology for supporting this work, along with additional assistance by Mindy Peters, Tao Wang, and Stéfan Forsik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Smith.

Additional information

Manuscript submitted May 21, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, R. Microsegregation Measurement: Methods and Applications. Metall Mater Trans B 49, 3258–3279 (2018). https://doi.org/10.1007/s11663-018-1395-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1395-4

Keywords

Navigation