Skip to main content
Log in

The Effect of Arc Current on Microstructure and Mechanical Properties of Hybrid LasTIG Welds of High-Strength Low-Alloy Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A hybrid laser-tungsten inert gas (LasTIG) welding system was applied for 3-mm-thick S460MC and S700MC high-strength low-alloy steel sheet butt welding with the aim to reduce the cooling rate compared with laser welding. The effect of the electric current was evaluated. Increasing arc current led to the increase of fused metal and heat-affected-zone (HAZ) dimensions. Fused metal grains were larger whereas the microhardness increase toward the base metal was lower at higher currents in this region. Microhardness peaks corresponding to the coarse-grained HAZ were reduced at higher currents for S460MC but were almost not affected in S700MC. The tensile strength of both the laser weld and LasTIG welds was comparable to the base metal for both alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. [1] X. Cao, P. Wanhara, J. Huang, C. Munro, A. Nolting: Mater. Des., 2011, vol. 32, pp. 3399-3413.

    Article  CAS  Google Scholar 

  2. [2] C.J. Bayley, A. Mantei: Can. Met. Quart., 2009, vol. 48, pp. 311-316.

    Article  CAS  Google Scholar 

  3. [3] K. Sampath: J. Mater. Eng. Perform., 2006, vol. 15, pp. 32-40.

    Article  CAS  Google Scholar 

  4. [4] J. Brozda, M. Zeman, M. Lomozik: Weld. Int., 2000, vol. 14, pp. 593-605.

    Article  Google Scholar 

  5. EN 10025-4: Hot rolled products of structural steels-part 4: technical delivery conditions for thermomechanical rolled weldable fine grain structural steels, 2004.

  6. EN 10149-2: Hot rolled flat products made of high yield strength steels for cold forming-part 2: technical delivery conditions for thermomechanically rolled, 2013.

  7. [7] W. Xu, D. Westerbaan, S. S. Nayak, D.L. Chen, F. Goodwin, Y. Zhou: Mater. Des., 2013, vol. 43, pp. 373-83.

    Article  CAS  Google Scholar 

  8. J. Górka and S. Stanoba: Proc. SPIE 10159, 2016, pp. 101590K.

  9. [9] W.M. Steen: Laser Material Processing, 2nd ed., Springer, London, 1998.

    Book  Google Scholar 

  10. [10] X. Yue, J.C. Lippold, B.T. Alexandrov, S.S. Babu: Weld. J., 2012, vol. 91, pp. 67S-75S.

    Google Scholar 

  11. J. Zhou and H.L. Tsai: Hybrid Laser-Arc Welding, Welding Processes, R. Kovacevic, ed., InTech, 2012, http://cdn.intechopen.com/pdfs/40994/InTech-Hrbrid_laser_arc_welding.pdf. Accessed 17 January 2018.

  12. [12] F. Möller, H. Kügler, S. Kötschau, A. Geier, S. F. Goecke: Phys. Procedia, 2014, vol. 56, pp. 620-629.

    Article  Google Scholar 

  13. [13] G. Song, L.M. Liu, M.S. Chi, J.F. Wang: Mater. Sci. Forum, 2005, vol. 488–489, pp. 371–375.

    Article  Google Scholar 

  14. [14] C. Kim, W. Choi, J. Kim, S. Rhee: Mater. Trans., 2008, vol. 49, pp.179-186.

    Article  CAS  Google Scholar 

  15. [15] A.D. Samigullin, D.A. Bashmakov, I.Kh. Israphilov, G.A. Turichin: J. Phys.: Conf. Ser., 2017, vol. 789, pp. 012048.

    Google Scholar 

  16. [16] F. Chaussé, P. Paillard, E. Bertrand, G. Rückert: J. Laser Appl., 2016, vol. 28, pp. 022416.

    Article  Google Scholar 

  17. T. Kim, Y. Suga, T. Koike (2003) JSME Int. J., Ser. A, 46:202-207.

    CAS  Google Scholar 

  18. Y. Murata, K. Yokoyama, A.S. Baskoro, and Y. Suga: Proc. of the Materials and Processing Conference, 2009.

  19. M. Sohail, M. Karhu, S.J. Na, S.W. Han, and V. Kujanpaa: J. Laser Appl., 2017, vol. 29, pp. 042009:1–14.

  20. [20] G. Casalino, S.L. Campanelli, U. Dal Maso, A.D. Ludovico: Procedia CIRP, 2013, vol. 12, pp. 151-156.

    Article  Google Scholar 

  21. Voestapline Steel & Service Center GmbH, Inspection Certificate: S460MC, 6 April 2017.

  22. Voestapline Steel & Service Center GmbH, Inspection Certificate: S700MC, 16 March 2017.

  23. [23] N. Yurioka: Welding in the World, 2004, vol. 48, pp. 21-27.

    Article  CAS  Google Scholar 

  24. [24] S.W. Banovic, T. Foecke, W.E. Luecke, J.D. McColskey, C.N. McCowan, T.A. Siewert, F.W. Gayle: JOM, 2007, vol. 59, pp. 22-30.

    Article  CAS  Google Scholar 

  25. M. Singh, T. Ohji, and R. Asthana: Green and Sustainable Manufacturing of Advanced Material, Elsevier Science Publishing Co Inc., 2015. ISBN: 978-0-12-411497-5.

  26. K. Hulka: The role of niobium in low carbon bainitic HSLA steels, Niobium Products Company GmbH, Dűsseldorf, Germany. https://www.phase-trans.msm.cam.ac.uk/2005/LINK/10.pdf. Accessed 23 January 2018.

  27. [27] J. Górka: Materiali in Tehnologie, 2016, vol. 50, pp. 617-621.

    Article  Google Scholar 

  28. Voestapline Steel & Service Center GmbH, High-strength and ultra-high strength thermo-mechanically rolled fine-grained steels, 2014. http://www.voestalpine.com/alform/en/Media-Center/Downloads. Accessed 23 January 2018.

  29. [29] Z. Liu, M. Kutsuna: Weld. Soc. Proc., 2006, vol. 24, pp. 344-349.

    CAS  Google Scholar 

  30. [30] K. Poorhaydari, B.M. Patchett: D.G. Ivey: Microsc. Microanal., 2002, vol. 8, pp. 1252-1253.

    Google Scholar 

  31. [31] J. Bian, H. Mohrbacher, J.S. Zhang, Y.T. Zhao, H.Z. Lu, H. Dong: Adv. Manuf., 2015, vol. 3, pp. 27–36.

    Article  CAS  Google Scholar 

  32. J.N. DuPont: Fundamentals of Weld Solidification, ASM Handbook, Volume 6A, Welding Fundamentals and Processes, ASM International, 2011. https://www.lehigh.edu/matsci/faculty/dupont/docs/Fundamentals_of_Weld_Solidification.pdf. Accessed 11 December 2017.

  33. [33] S. Kou: Welding Metallurgy, 2nd ed. Hoboken, NJ: John Wiley & Sons, 2003.

    Google Scholar 

  34. [34] Y.Q. Zhang, H.Q. Zhang, J.F. Li, W.M. Liu: J. Iron Steel Res. Inter., 2009, vol. 16, pp. 73-80.

    Article  Google Scholar 

  35. M. Maalekian: The Effects of Alloying Elements on Steels (I), Technische Universität Graz, 2007. https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=32837. Accessed 4 January 2018.

  36. [36] Y. Tian, H.T. Wang, Y. Li, Z.D. Wang, G.D. Wang: Mater. Res., 2017, vol. 20, pp. 853-859.

    Article  Google Scholar 

  37. [37] S.R. Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao: Defence Technol., 2015, vol. 11, pp. 308-317.

    Article  Google Scholar 

  38. [38] C. Capdevila, F.G. Caballero, C. García de Andrés: J. Mater. Sci. Technol., 2003, vol. 19, pp. 581-586.

    Article  CAS  Google Scholar 

  39. [39] C. Munro, A. Nolting, X. Cao, P. Wanjara: Mater. Sci. Forum, 2012, vol. 706-709, pp. 2992-2997.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Technology Agency of the Czech Republic (Project GAMA TG03010046) and the Ministry of Education, Youth and Sports of the Czech Republic (Project LO1212). The research infrastructure was funded by the Ministry of Education, Youth and Sports of the Czech Republic and the European Commission (Project CZ.1.05/2.1.00/01.0017) and by the Czech Academy of Sciences (Project RVO:68081731). The authors would like to thank Ing. Kamil Podaný, PhD, for the tensile test execution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Šebestová.

Additional information

Manuscript submitted April 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šebestová, H., Horník, P., Mrňa, L. et al. The Effect of Arc Current on Microstructure and Mechanical Properties of Hybrid LasTIG Welds of High-Strength Low-Alloy Steels. Metall Mater Trans B 49, 3559–3569 (2018). https://doi.org/10.1007/s11663-018-1385-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1385-6

Keywords

Navigation