Skip to main content
Log in

Effects of Particle Diameter and Coke Layer Thickness on Solid Flow and Stress Distribution in BF by 3D Discrete Element Method

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to reduce ironmaking-related CO2 emissions, hydrogen-enriched blast furnace (BF) operation is currently under development. In hydrogen-enriched BF operation, coke layer thickness can be decreased to reduce CO2 emissions. However, BFs operating with thin coke layers may experience instability or discontinuous phenomena such as particle slip and gas channeling problems, so it is important to optimize the particle diameter and coke layer thickness for optimal BF operation. In this study, the effects of particle diameter and coke layer thickness on the solid flow and stress distribution in a BF were analyzed using a three-dimensional discrete element method. Furthermore, the effects of particle diameter and coke layer thickness on the burden layer stabilities, particle velocities, and particle stress distributions have been investigated. The results show that decreasing the coke layer thickness caused instability owing to the mixing of the coke and ore layers in the BF-cohesive zone and slight increases in both the average particle velocities and the average normal particle stress magnitudes. In addition, the average particle velocities and average normal particle stresses were higher for the smaller particles than for the larger ones during the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Adema, Y. Yang, and R. Boom: ISIJ Int., 2010, vol. 50, pp. 954–961.

    Article  CAS  Google Scholar 

  2. J. De Castro, H. Nogami, and J. Yagi: ISIJ Int., 2001, vol. 41, pp. 18–24.

    Article  Google Scholar 

  3. M. Chu, H. Nogami, and J. Yagi: ISIJ Int., 2004, vol. 44, pp. 801–808.

    Article  CAS  Google Scholar 

  4. H. Nogami, P. Austin, J. Yagi, and K. Yamaguchi: ISIJ Int., 2004, vol. 44, pp. 500–509.

    Article  CAS  Google Scholar 

  5. H. Nogami, H. Yamaoka, and K. Takatani: ISIJ Int., 2004, vol. 44, pp. 2150–2158.

    Article  CAS  Google Scholar 

  6. J. Castro, H. Nogami, and J. Yagi: ISIJ Int., 2000, vol. 40, pp. 637–646.

    Article  Google Scholar 

  7. S. Natsui, T. Kikuchi, and R. Suzuki: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2395–2413.

    Article  Google Scholar 

  8. S. Yuu, T. Umekage, S. Matsuzaki, M. Kadowaki, and K. Kunitomo: ISIJ Int., 2010, vol. 50, pp. 962–971.

    Article  CAS  Google Scholar 

  9. X. Dong, A. Yu, S. Chew, and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 330–349.

    Article  CAS  Google Scholar 

  10. J. Yagi: ISIJ Int., 1993, vol. 33, pp. 619–639.

    Article  CAS  Google Scholar 

  11. X. Dong, A. Yu, J. Yagi, and P. Zulli: ISIJ Int., 2007, vol. 47, pp. 1553–1570.

    Article  CAS  Google Scholar 

  12. X. Dong, A. B. Yu, J. Burgess, D. Pinson, S. Chew, and P. Zulli: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 214–226.

    Article  CAS  Google Scholar 

  13. S. Zhang, A. Yu, P. Zulli, B. Wright, and P. Austin: Appl. Math. Model., 2002, vol. 26, pp. 141–154.

    Article  Google Scholar 

  14. S. Story and R. Fruehan: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 43–54.

    Article  CAS  Google Scholar 

  15. M. Shin, S. Min, J. Lee, J. Park, and D. Min: Met. Mater. Int., 2012, vol. 18, pp. 1041–1047.

    Article  CAS  Google Scholar 

  16. M. Shin, J. Oh, and J. Lee: ISIJ Int., 2015, vol. 55, pp. 2056–2063.

    Article  CAS  Google Scholar 

  17. D. Jang, Y. Kim, M. Shin, and J. Lee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1308–1314.

    Article  Google Scholar 

  18. H. Bertling: ISIJ Int., 1999, vol. 39, pp. 617–624.

    Article  CAS  Google Scholar 

  19. Y. Kashihara, Y. Iwai, N. Ishiwata, N. Oyama, H. Matsuno, H. Horikoshi, K. Yamamoto, and M. Kuwabara: ISIJ Int., 2017, vol. 57, pp. 665–672.

    Article  CAS  Google Scholar 

  20. Y. Kashihara, Y. Iwai, T. Sato, N. Ishiwata, and M. Sato: ISIJ Int., 2015, vol. 55, pp. 1237–1244.

    Article  CAS  Google Scholar 

  21. K. Ichikawa, Y. Kashihara, N. Oyama, T. Hirosawa, J. Ishii, M. Sato, and H. Matsuno: ISIJ Int., 2017, vol. 57, pp. 254–261.

    Article  CAS  Google Scholar 

  22. J. Chung and N. Hur: ISIJ Int., 1997, vol. 37, pp. 119–125.

    Article  CAS  Google Scholar 

  23. K. Takahashi, T. Nouchi, M. Sato, and T. Ariyama: ISIJ Int., 2015, vol. 55, pp. 1866–1875.

    Article  CAS  Google Scholar 

  24. M. Sato, K. Takahashi, T. Nouchi, and T. Ariyama: ISIJ Int., 2015, vol. 55, pp. 2105–2114.

    Article  CAS  Google Scholar 

  25. H. Nogami, Y. Kashiwaya, and D. Yamada: ISIJ Int., 2012, vol. 52, pp. 1523–1527.

    Article  CAS  Google Scholar 

  26. J. Li, P. Wang, L. Zhou, and M. Cheng: ISIJ Int., 2007, vol. 47, pp. 1097–1101.

    Article  CAS  Google Scholar 

  27. M. Geerdes, H. Toxopeus, and C. van der Vliet: Modern Blast Furnace Ironmaking: An Introduction, Second Ed., IOS Press B.V., Amsterdam, 2009, pp. 67–92.

    Google Scholar 

  28. Z. Fan, S. Igarashi, S. Natsui, S. Ueda, T. Yang, R. Inoue, and T. Ariyama: ISIJ Int., 2010, vol. 50, pp. 1406–1412.

    Article  CAS  Google Scholar 

  29. K. Yang, S. Choi, J. Chung, and J. Yagi: ISIJ Int., 2010, vol. 50, pp. 972–980.

    Article  CAS  Google Scholar 

  30. D. Fu, Y. Chen, Y. Zhao, J. D’Alessio, K. Ferron, and C. Zhou: Appl. Therm. Eng., 2014, vol. 66, pp. 298–308.

    Article  CAS  Google Scholar 

  31. P. Cundall and O. Strack: Geotechnique, 1979, vol. 29, pp. 47–65.

    Article  Google Scholar 

  32. J. Park, H. Jung, M. Jo, H. Oh, and J. Han: Met. Mater. Int., 2011, vol. 17, pp. 485–496.

    Article  CAS  Google Scholar 

  33. Y. Tsuji, T. Kawaguchi, and T. Tanaka: Powder Technol., 1993, vol. 77, pp. 79–87.

    Article  CAS  Google Scholar 

  34. Q. Hou, E. Dianyu, S. Kuang, Z. Li, and A. B. Yu: Powder Technol., 2017, vol. 314, pp. 557–566.

    Article  CAS  Google Scholar 

  35. B. Xu, A. B. Yu, S. J. Chew, and P. Zulli: Powder Technol., 2000, vol. 109, pp. 13–26.

    Article  CAS  Google Scholar 

  36. B. H. Xu and A. B. Yu: Chem. Eng. Sci., 1997, vol. 52, pp. 2785–2809.

    Article  CAS  Google Scholar 

  37. S. Matsuhashi, H. Kurosawa, S. Natsui, T. Kon, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2012, vol. 52, pp. 1990–1999.

    Article  CAS  Google Scholar 

  38. H. Zhu, Z. Zhou, A. B. Yu, and P. Zulli: Granul. Matter, 2009, vol. 11, pp. 269–280.

    Article  CAS  Google Scholar 

  39. S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 1410–1417.

    Article  CAS  Google Scholar 

  40. T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi, and H. Nogami: ISIJ Int., 2014, vol. 100, pp. 198–210.

    CAS  Google Scholar 

  41. S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 51–58.

    Article  CAS  Google Scholar 

  42. S. Ueda, T. Kon, H. Kurosawa, S. Natsui, T. Ariyama, and H. Nogami: ISIJ Int., 2015, vol. 55, pp. 1232–1236.

    Article  CAS  Google Scholar 

  43. S. Natsui, H. Nogami, S. Ueda, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 41–50.

    Article  CAS  Google Scholar 

  44. Z. Miao, Z. Zhou, A. B. Yu, and Y. Shen: Powder Technol., 2017, vol. 314, pp. 542–549.

    Article  CAS  Google Scholar 

  45. H. Kurosawa, S. Matsuhashi, S. Natsui, T. Kon, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2012, vol. 52, pp. 1010–1017.

    Article  CAS  Google Scholar 

  46. Z. Y. Zhou, H. P. Zhu, A. B. Yu, B. Wright, and P. Zulli: Comput. Chem. Eng., 2008, vol. 32, pp. 1760–1772.

    Article  CAS  Google Scholar 

  47. Z. Fan, S. Natsui, S. Ueda, T. Yang, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2010, vol. 50, pp. 946–953.

    Article  CAS  Google Scholar 

  48. J. Zhang, Y. Chen, Z. Fan, Z. Hu, T. Yang, and T. Ariyama: J. Iron Steel Res. Int., 2011, vol. 18, pp. 1–6.

    Article  Google Scholar 

  49. S. Natsui, S. Ueda, Z. Fan, N. Andersson, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2010, vol. 50, pp. 207–214.

    Article  CAS  Google Scholar 

  50. S. Natsui, S. Ueda, M. Oikawa, Z. Fan, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2009, vol. 49, pp. 1308–1315.

    Article  CAS  Google Scholar 

  51. M. Keyser, M. Conradie, M. Coertzen, and J. Van Dyk: Fuel, 2006, vol. 85, pp. 1439–1445.

    Article  CAS  Google Scholar 

  52. T. Nouchi, T. Sato, M. Sato, K. Takeda, and T. Ariyama: ISIJ Int., 2005, vol. 45, pp. 1426–1431.

    Article  CAS  Google Scholar 

  53. Y. Yu, A. Westerlund, T. Paananen, and H. Saxen: ISIJ Int., 2011, vol. 51, pp. 1050–1056.

    Article  CAS  Google Scholar 

  54. Y. Yu and H. Saxen: ISIJ Int., 2012, vol. 52, pp. 788–796.

    Article  CAS  Google Scholar 

  55. Z. Zhou, H. Zhu, A. Yu, B. Wright, D. Pinson, and P. Zulli: ISIJ Int., 2005, vol. 45, pp. 1828–1837.

    Article  CAS  Google Scholar 

  56. S. Kikuchi, T. Kon, S. Ueda, S. Natsui, R. Inoue, and T. Ariyama: ISIJ Int., 2015, vol. 55, pp. 1313–1320.

    Article  CAS  Google Scholar 

  57. F. Zhengyun, S. Natsui, S. Ueda, J. Kano, R. Inoue, and T. Ariyama: Tetsu-to-Hagane, 2010, vol. 96, pp. 1–10.

    Article  Google Scholar 

  58. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science Publishers, London, 1987, pp. 3–63.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Industrial Strategic Technology Development Program (20172010106300, Development of Hybrid ironmaking processes for lower CO2 emissions) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). The authors are grateful to Assistant Professor Shungo Natsui at Hokkaido University for his informative discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonho Lee.

Additional information

Manuscript submitted March 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geleta, D.D., Lee, J. Effects of Particle Diameter and Coke Layer Thickness on Solid Flow and Stress Distribution in BF by 3D Discrete Element Method. Metall Mater Trans B 49, 3594–3602 (2018). https://doi.org/10.1007/s11663-018-1368-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1368-7

Keywords

Navigation