Skip to main content
Log in

Simulation of Air Entrainment during Mold Filling: Comparison with Water Modeling Experiments

  • Technical Publication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Oxide inclusions form during pouring of metal castings as a result of air entrainment. Recently, a model was developed by the authors to predict the volumetric air entrainment during pouring. It was found that the velocity, diameter, and turbulence intensity of the liquid stream affect the air entrainment rate during pouring. In this study, the developed air entrainment model is validated with water modeling experiments. In the water modeling studies, water was poured using a bottom pour ladle. The effects of nozzle opening, head height, nozzle diameter, and nozzle extension are simulated. The predictions compare favorably with the experimental measurements. Results indicate that low head height and short pouring time have a beneficial effect on reducing the air entrainment during pouring. In addition, a fully open nozzle and the use of a nozzle extension further reduce the amount of entrained air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Campbell: Complete Casting Handbook, 1st ed., Butterworth-Heinemann, Oxford, UK, 2011.

    Google Scholar 

  2. A.J. Melendez, K.D. Carlson and C. Beckermann: Int. J. Cast Met. Res., 2010, vol. 23, pp. 278–288.

    Article  CAS  Google Scholar 

  3. D.R. Askeland, P.K. Trojan and R.A. Flinn: AFS Trans., 1972, vol. 80, pp. 349-58.

    CAS  Google Scholar 

  4. J. Campbell: Mater. Sci. Tech., 2006, vol. 22, pp. 127-45.

    Article  CAS  Google Scholar 

  5. M. Divandari and J. Campbell: Aluminum Trans., 2000, vol. 2, pp. 233-238.

    CAS  Google Scholar 

  6. T.J. Lin and H.G. Donnelly: AIChE, 1966, vol. 12, pp. 563-571.

    Article  CAS  Google Scholar 

  7. A.K. Biń: Chem. Eng. Sci., 1993, vol. 48, pp. 3585-3630.

    Article  Google Scholar 

  8. D.A. Ervine, E. McKeough and E.M. Elsawy: ICE Proc., 1980, vol. 69, pp. 425-445.

    Google Scholar 

  9. K.J. Sene: Chem. Eng. Sci., 1988, vol. 43, pp. 2615-2623.

    Article  CAS  Google Scholar 

  10. E. Van de Sande and J.M. Smith: Chem. Eng. Sci., 1976, vol. 31, pp. 219-224.

    Article  Google Scholar 

  11. T. Brattberg and H. Chanson: Chem. Eng. Sci., 1998, vol. 24, pp. 4113-4127.

    Article  Google Scholar 

  12. C. Wanstall, J. Griffin and C.E. Bates: Proc. 47th SFSA Technical and Operating Conference, Chicago, IL, 1993, Paper No. 1.1.

  13. C.E. Bates and J. Griffin: Research report no. 106, Steel Founders’ Society of America (SFSA), Crystal Lake, IL, USA, 1994.

  14. S. Kuyucak: AFS Trans., 2006, vol. 114, pp. 811-818.

    CAS  Google Scholar 

  15. T. Wang, S. Yao, Q. Tong and L. Sui: J. Manuf. Process, 2017, vol. 27, pp. 108-113.

    Article  Google Scholar 

  16. M. Afsharpour, B. Homayun and S.M.A. Boutorabi: Mater. Sci. Tech., 2014, vol. 30, pp. 152-159.

    Article  CAS  Google Scholar 

  17. J. Ma, A.A. Oberai, D.A. Drew, R.T. Lahey and M. Hyman: J. Comput. Multiphase Flow, 2011, vol. 3, pp. 41-56.

    Article  CAS  Google Scholar 

  18. S.H. Majidi and C. Beckermann: Int. J. Cast Met. Res., 2017, vol. 30, pp. 301-315.

    Article  CAS  Google Scholar 

  19. MAGMAsoft, MAGMA Gmbh, Kackerstrasse 11, 52072 Aachen, Germany.

  20. F. White: Fluid Mechanics, 7th ed., Mcgraw Hill Higher Education, New York, USA, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beckermann.

Additional information

Manuscript submitted March 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, S.H., Griffin, J. & Beckermann, C. Simulation of Air Entrainment during Mold Filling: Comparison with Water Modeling Experiments. Metall Mater Trans B 49, 2599–2610 (2018). https://doi.org/10.1007/s11663-018-1334-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1334-4

Keywords

Navigation