Skip to main content
Log in

Optimization of Mold Flux for the Continuous Casting of Cr-Contained Steels

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To compensate the negative effect caused by the absorption of chromium oxide inclusions during the casting process of Cr-contained steels, a new mold flux system has been designed and investigated. The melting temperature range of the newly designed mold flux system is from [1124 K to 1395 K (851 °C to 1122 °C)]. The viscosity at 1573 K (1300 °C) and the break temperature increase with the addition of MnO and Cr2O3 but decrease with the addition of B2O3. The crystalline fraction of mold flux decreases from 81 to 42.1 pct with the addition of MnO and Cr2O3, and then further decreases to 25.3 pct with the addition of B2O3; however, it improves from 54.4 to 81.5 pct when the basicity increases. Besides, the heat-transfer ability of mold flux is inverse to the crystallization ratio of the slag. The comprehensive study of the properties for the four designed mold fluxes suggests that the mold flux with 1.15 basicity-3.01 pct B2O3-1.10 pct MnO-2.10 pct Cr2O3 shows the best properties for the continuous casting of Cr-contained steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Yan, S. Huang, L. Pandelaers, J.V. Dyck, M. Guo, and B. Blanpain: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1105–19.

    Article  Google Scholar 

  2. T. Nakasuga, K. Nakashima, and K. Mori: ISIJ Int., 2004, vol. 44, pp. 665–72.

    Article  Google Scholar 

  3. Y. Okabe, I. Tajima, and K. Ito: Metall. Mater. Trans. B, 1998, vol. 19B, pp. 131–36.

    Article  Google Scholar 

  4. L. Zhang: JOM, 2012, vol. 64, pp. 1059–62.

    Article  Google Scholar 

  5. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 22–35.

    Article  Google Scholar 

  6. H. Arai, K. Matsumoto, S. Shimasaki, and S. Taniguchi: ISIJ Int., 2009, vol. 49, pp. 965–74.

    Article  Google Scholar 

  7. G.A. Khater and M.H. Idris: Ceram. Int., 2009, vol. 35, pp. 69–75.

    Article  Google Scholar 

  8. V.K. Marghussian and S. Arjomandnia: Phys. Chem. Glasses, 1999, vol. 40, pp. 311–13.

    Google Scholar 

  9. M.A. Bin Hussain, M.H. Idrees, and M.M. Khan: J. Therm. Anal. Calorim., 2002, vol. 67, pp. 563–77.

    Article  Google Scholar 

  10. L. Barbieri, C. Leonelli, T. Manfredini, G.C. Pellacani, G.C. Pellacani, E. Tondello, and R. Bertoncello: J. Mater. Sci., 1994, vol. 29, pp. 6273–80.

    Article  Google Scholar 

  11. C. Xu, W. Wang, L. Zhou, S. Xie, and C. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 882–92.

    Article  Google Scholar 

  12. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 354–62.

    Article  Google Scholar 

  13. W. Wang, X. Yan, L. Zhou, S. Xie, and D. Huang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 963–73.

    Article  Google Scholar 

  14. L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925–36.

    Article  Google Scholar 

  15. L. Zhou, W. Wang, R. Liu, and B.G. Thomas: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1264–79.

    Article  Google Scholar 

  16. L. Zhou, W. Wang, and K. Zhou: Metals, 2016, vol. 6, pp. 139–53.

    Article  Google Scholar 

  17. W. Wang and A.W. Cramb: ISIJ Int., 2005, vol. 45, pp. 1864–70.

    Article  Google Scholar 

  18. W. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 66–74.

    Article  Google Scholar 

  19. J.V. Beck: 1HCP1D: Version 5.31, Beck Engineering Consultants Company, Houston, TX, 1997.

  20. A. Muan and S. Omiya: J. Am. Ceram. Soc., 1960, vol. 43, pp. 204–09.

    Article  Google Scholar 

  21. A.B. Fox, M.E. Valdez, J. Gisby, R.C. Atwood, P.D. Lee, and S. Sridhar: ISIJ Int., 2004, vol. 44, pp. 836–45.

    Article  Google Scholar 

  22. H. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 1–8.

    Article  Google Scholar 

  23. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26–34.

    Article  Google Scholar 

  24. G. Kim, C. Kim, and I. Sohn: ISIJ Int., 2013, vol. 53, pp. 170–76.

    Article  Google Scholar 

  25. S. Ozawa, M. Susa, T. Goto, R. Endo, and K.C. Mills: ISIJ Int., 2006, vol. 46, pp. 413–19.

    Article  Google Scholar 

  26. J. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 834–42.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Science Foundation of China (Grant Nos. 51504294 and U1760202) is great acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejun Zhou.

Additional information

Manuscript submitted July 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yu, J., Zhou, L. et al. Optimization of Mold Flux for the Continuous Casting of Cr-Contained Steels. Metall Mater Trans B 49, 1580–1587 (2018). https://doi.org/10.1007/s11663-018-1279-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1279-7

Keywords

Navigation