Skip to main content
Log in

Automated Classification and Analysis of Non-metallic Inclusion Data Sets

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The aim of this study is to utilize principal component analysis (PCA), clustering methods, and correlation analysis to condense and examine large, multivariate data sets produced from automated analysis of non-metallic inclusions. Non-metallic inclusions play a major role in defining the properties of steel and their examination has been greatly aided by automated analysis in scanning electron microscopes equipped with energy dispersive X-ray spectroscopy. The methods were applied to analyze inclusions on two sets of samples: two laboratory-scale samples and four industrial samples from a near-finished 4140 alloy steel components with varying machinability. The laboratory samples had well-defined inclusions chemistries, composed of MgO-Al2O3-CaO, spinel (MgO-Al2O3), and calcium aluminate inclusions. The industrial samples contained MnS inclusions as well as (Ca,Mn)S + calcium aluminate oxide inclusions. PCA could be used to reduce inclusion chemistry variables to a 2D plot, which revealed inclusion chemistry groupings in the samples. Clustering methods were used to automatically classify inclusion chemistry measurements into groups, i.e., no user-defined rules were required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-291.

    Article  Google Scholar 

  2. H.V. Atkinson and G. Shi: Prog. Mater. Sci., 2003, vol. 48, pp. 457-520.

    Article  Google Scholar 

  3. W.M. Garrison and A.L. Wojcieszynski: Mater. Sci. Eng. A, 2007, vol. 464, pp. 321-329.

    Article  Google Scholar 

  4. W.M. Garrison and A.L. Wojcieszynski: Mater. Sci. Eng. A, 2009, vol. 505, pp. 52-61.

    Article  Google Scholar 

  5. A. Gupta, S. Goyal, K.A. Padmanabhan, and A.K. Singh: Int. J. Adv. Manuf. Technol., 2015, vol. 77, pp. 565-572.

    Article  Google Scholar 

  6. J. Lankford: Int. Met. Rev., 1977, vol. 22, pp. 221-228.

    Article  Google Scholar 

  7. Y. Murakami (2002) Metal Fatigue: Effects of Small Defects on Nonmetallic Inclusions. Elsevier, Amsterdam.

    Google Scholar 

  8. A.W. Cramb (1999), High Purity, Low Residual, and Clean Steels, In: C. L. Briant (ed). Kalai. Marcel Dekker, New York, pp. 49–91.

    Google Scholar 

  9. S.R. Story, T.J. Piccone, R.J. Freuhan, and M. Potter: Iron Steel Technol., 2004, vol. 9, pp. 163-169.

    Google Scholar 

  10. P. Kaushik, J. Lehmann, and M. Nadif: Metall. Mater. Trans. B, 2012, vol. 43, pp. 710-725.

    Article  Google Scholar 

  11. H.P. Lentz, M.S. Potter, and G.S. Casuccio: in ISTech Proceedings. 2017.

  12. D. Tang and P.C. Pistorius: in AISTech Proceedings. 2015.

  13. A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F. Huang, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2569-2577.

    Article  Google Scholar 

  14. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S.R. Story: Metall. Mater. Trans. B, 2011, vol. 42, pp. 711-719.

    Article  Google Scholar 

  15. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S.R. Story: Metall. Mater. Trans. B, 2011, vol. 42, pp. 720-729.

    Article  Google Scholar 

  16. J.H. Shin, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48, pp. 46-59.

    Article  Google Scholar 

  17. E.B. Pretorius, H.G. Oltmann, and B.T. Schart: in AISTech Proceedings. 2013.

  18. S.R. Story and R.I. Asfahani (2013) Iron Steel Technol. 9, 86-99.

    Google Scholar 

  19. M. Harris, O. Adaba, S. Lekakh, R. O’Malley, and V.L. Richards: in AISTech Proceedings. 2015.

  20. N. Anmark, A. Karasev, and P.G. Jonsson: Materials, 2015, vol. 8, pp. 751-783.

    Article  Google Scholar 

  21. H. Abdi and L.J. Williams: WIREs Comp. Stat., 2010, vol. 2, pp. 433-459.

    Article  Google Scholar 

  22. M. Scholz: Approaches to analyse and interpret biological profile data. PhD thesis. 2006, Potsdam University: Potsdam.

  23. D. Binu: Expert Syst. Appl., 2015, vol. 42, pp. 5848-5859.

    Article  Google Scholar 

  24. P.J. Rousseeuw: J. Comput. Appl. Math., 1987, vol. 20, pp. 53-65.

    Article  Google Scholar 

  25. C. Fraley, and A.E. Raftery, Technical Report No. 597 University of Washington, Seattle, 2007.

  26. C.M. Bisho (2006) Pattern recognition and Machine Learning, Springer, New York, pp. 216–218.

    Google Scholar 

  27. J. Tan, B.A. Webler: AIST Trans., 2017, vol. 14, pp. 172-179.

    Google Scholar 

  28. R. Team, RStudio: Integrated Development Environment for R, (RStudio, Inc.Place, Published, 2016), http://www.rstudio.com/.

  29. R.D.C. Team, R: A language and environment for statistical computing, (R Foundation for Statistical Computing Place, Published, 2008), http://www.R-project.org.

  30. C. Fraley, A.E. Raftery, L. Scrucca, T.B. Murphy, and M. Fop, Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation, Package ‘mclust’, 2016, http://www.stat.washington.edu/mclust/. Accessed 23 May 2016.

  31. M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs: J. Stat. Softw., 2014, vol. 61. pp. 1-14.

    Article  Google Scholar 

  32. N. Hamilton, An Extension to ‘ggplot2’, for the Creation of Ternary Diagrams, Package ‘ggtern’, 2016, http://www.ggtern.com. Accessed 21 June 2016.

  33. T. Kourti, and J.F. MacGregor: Chemom. Intell. Lab. Syst., 1995, vol. 28, pp. 2-21.

    Article  Google Scholar 

  34. J.V. Kresta, J.F. MacGregor, and T.E. Marlin: Can. J. Chem. Eng., 1991, vol 69, pp. 35-47.

    Article  Google Scholar 

  35. R. Kiessling: J. Met., 1969, vol. 21, pp. 47-54.

    Google Scholar 

  36. L.E.K. Holappa and A.S. Helle: J. Mater. Process. Technol., 1995, vol. 53, pp. 177-86.

    Article  Google Scholar 

  37. R.V. Väinölä, L.E.K. Holappa, and P.H.J. Karvonen: J. Mater. Process. Technol., 1995, vol. 53, pp. 453-465.

    Article  Google Scholar 

  38. L. Zhang: JOM, 2013, vol. 65, pp. 1138-1144.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the member companies of the Center for Iron and Steelmaking Research and the use of the Materials Characterization Facility at Carnegie Mellon University, supported by Grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abdulsalam.

Additional information

Manuscript submitted September 01, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulsalam, M., Zhang, T., Tan, J. et al. Automated Classification and Analysis of Non-metallic Inclusion Data Sets. Metall Mater Trans B 49, 1568–1579 (2018). https://doi.org/10.1007/s11663-018-1276-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1276-x

Keywords

Navigation