Skip to main content
Log in

Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. J. Mackey. Can. Metall. Q. 2013, vol. 18, pp. 221-260.

    Google Scholar 

  2. G. Liu, R. Zhu. MING & METALL. 2008, vol. 17, pp. 59-64.

    Google Scholar 

  3. D. F. Qiu, Y. Q. Wu, B. Fu, C. H. Xu. Energy Saving of Nonferrous Metallurgy. 2005, vol. 4, pp. 6-13.

    Google Scholar 

  4. S. Etsurou, H. P. Sun, M. Katsumi. ISIJ International, 1999, vol. 85, pp. 27-32.

    Google Scholar 

  5. Y. W. Chen. WORLD NONFERROUS METALS, 2001, vol. 9, pp. 53-58.

    Google Scholar 

  6. C. Arslan, F. Arslan. Hydrometallurgy. 2002, vol. 27, pp. 1-7.

    Article  Google Scholar 

  7. R. Sridhar, J. M. Toguri, S. Simeonov. Metall. Mater. Trans. B. 1997, vol. 28, pp. 191-200.

    Article  Google Scholar 

  8. S. W. Ip, J. M. Toguri. Metall. Mater. Trans. B. 1992, vol. 23, pp. 303-311.

    Article  Google Scholar 

  9. H. Y. Cao, L. Zhang, N. X. Fu, F. S. Xia, Z. T. Sui. J. Mater. Metall. 2009, vol. 8, pp. 33-39.

    Google Scholar 

  10. D. X. Liu. Nonferrous Met. 2002, vol. 54, pp.6-10.

    Google Scholar 

  11. P. Coursol, N. C. Valencia, P. Mackey, S. Bell, B. Davis. JOM. 2012, vol. 64, pp. 1305-1313.

    Article  Google Scholar 

  12. R. R. Moskalyk, A. M. Alfantantazi. MINER ENG. 2003, vol.16, pp. 893-919.

    Article  Google Scholar 

  13. M. J. Chen, Energy Saving of Nonferrous Metallurgy. 2013, vol. 2, pp. 46-49.

    Google Scholar 

  14. X. M. Zhu, M. S. Chen, P. Ning, Z. R. Han, Y. X. Ma. MATER REV. 2013, vol. 27, pp. 280-284.

    Google Scholar 

  15. B. Gora, R. K. Jana, Premchand. Resource, Conserv Recycl. 2003, vol. 39, pp. 299-313.

    Article  Google Scholar 

  16. Y. Y. Zhou. Non-Ferrous Mining and Metallurgy. 1988, vol. 5, pp.39-40.

    Google Scholar 

  17. J. Li, M. L. Sun, K. X. Huang. Nonferrous Met. 1990, vol. 5, pp. 20-22.

    Google Scholar 

  18. G. Z. Wu, W. Ute, G. R. Wu. Journal of Northeast University of Technology. 1989, vol. 10, pp. 388-393.

    Google Scholar 

  19. J. Li, M. L. Sun, K. X. Huang. J. CENT. SOUTH INST. MIN. METAL. 2008, Vol.20, pp. 448-455.

    Google Scholar 

  20. C. Ramshaw, R. H. Mallinson. EP, EP0002568, 1984.

  21. M. R. Rahimipour, M. Sobhani. Metall. Mater. Trans. B. 2013, vol. 44, pp. 1120-1123.

    Article  Google Scholar 

  22. T. P. D. Rajan, R. M. Pillai, B. C. Pai. Int. J. Cast Metal Res. 2013, vol. 21, pp. 214-218.

    Article  Google Scholar 

  23. J. T. Gao, Y. W. Zhong, Z. C. Guo, Metall. Mater. Trans. B. 2016, vol. 47, pp. 2459-2467.

    Article  Google Scholar 

  24. Y. Lu, J. T. Gao, F. Q. Wang, Z. C. Guo. Metall. Mater. Trans. B. 2017, vol. 48, pp. 749-753.

    Article  Google Scholar 

  25. J. T. Gao, Y. Li, G. L. Xu, F. Q. Wang, Y. Lu, Z. C. Guo. ISIJ International, 2017, vol. 57, pp. 587-589.

    Article  Google Scholar 

  26. 26. J. T. Gao, Y. W. Zhong, Z. C. Guo. ISIJ International, 2016, vol. 56, pp. 1352-1357.

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundations of China (No. 51774037 and No. 51404025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintao Gao.

Additional information

Manuscript submitted September 15, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, X., Gao, J., Huang, Z. et al. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field. Metall Mater Trans B 49, 1165–1173 (2018). https://doi.org/10.1007/s11663-018-1235-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1235-6

Keywords

Navigation