Skip to main content
Log in

Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Fillon, X. Sauvage, B. Lawrence, C. Sinclair, M. Perez, A. Weck, E. Cantergiani, T. Epicier, and C.P. Scott, Scripta Mater., 2015, vol. 95, pp. 35-38.

    Article  Google Scholar 

  2. S.Z. Wu, H.W. Yen, M.X. Huang, and A.H.W. Ngan, Scr. Mater., 2012, vol. 67, pp. 641–44.

    Article  Google Scholar 

  3. H. Shibata, Y. Arai, M. Suzuki, and T. Emi, Metall. Trans. B, 2000, vol. 31, pp. 981–91.

    Article  Google Scholar 

  4. F.G. Chen, T.Q. Zhang, J. Wang, L.T. Zhang, and G.F. Zhou, J. Alloy. Compd., 2015, vol. 640, pp. 371–75.

    Article  Google Scholar 

  5. F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, and M. Mouni, Acta Mater., 2016, vol. 116, pp. 354–63.

    Article  Google Scholar 

  6. D. Tourret, G. Reinhart, Ch.-A. Gandin, G.N. Iles, U. Dahlborg, M. Calvo-Dahlborg, and C.M. Bao, Acta Mater., 2011, vol. 59, pp. 6658–69.

    Article  Google Scholar 

  7. I. Kaban, P. Jóvári, V. Kokotin, O. Shuleshova, B. Beuneu, K. Saksl, N. Mattern, J. Eckert, and A.L. Greer, Acta Mater., 2013, vol. 61, pp. 2509–20.

    Article  Google Scholar 

  8. P. Lü, K. Zhou, and H.P. Wang, Sci. Rep., 2016, vol. 6, pp. 39042.

    Article  Google Scholar 

  9. D.H. StJohn, Acta Metall., 1990, vol. 38, pp. 631–36.

    Article  Google Scholar 

  10. D. H. St. John and L. M. Hogan, Acta Metall., 1987, vol. 35, pp. 171–74.

    Article  Google Scholar 

  11. D. H. St. John and L. M. Hogan, Acta Metall., 1977, vol. 25, pp. 77–81.

    Article  Google Scholar 

  12. M. Leonhardt, W. Löser, and H.-G. Lindenkreuz, Scr. Mater., 2004, vol. 50, pp. 453–58.

    Article  Google Scholar 

  13. L. Cao, R.F. Cochrane, and A.M. Mullis, Metall. Trans. A, 2015, vol. 46A, pp. 4705–15.

    Article  Google Scholar 

  14. S. Saleem, M. Vynnycky, and H. Fredriksson, Metall. Trans. B, 2017, vol. 48, pp. 1625–35.

    Article  Google Scholar 

  15. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Acta Mater., 2009, vol. 57, pp. 941–71.

    Article  Google Scholar 

  16. P. Lü and H.P. Wang, Scr. Mater. 2017, vol. 137, pp. 31–35.

    Article  Google Scholar 

  17. J. Valloton, J.A. Dantzig, M. Plapp, and M. Rappaz, Acta Mater., 2013, vol. 61, pp. 5549–60.

    Article  Google Scholar 

  18. J. Valloton, J.-D. Wagnière, and M. Rappaz, Acta Mater., 2012, vol. 60, pp. 3840–48.

    Article  Google Scholar 

  19. M. O. EL-BEALY, Metall. Trans. B, 2012, vol. 43, pp. 1488–516.

    Article  Google Scholar 

  20. W. Löser, M. Leonhardt, H.-G. Lindenkreuz, and B. Arnold, Mater. Sci. Eng. A, 2004, vol. 375, pp. 534–39.

    Article  Google Scholar 

  21. M. Guerdane, F. Wendler, D. Danilov, H. Teichler, B. Nestler1, Phys. Rev. B, 2010, https://doi.org/10.1103/PhysRevB.81.224108

    Google Scholar 

  22. J. Brillo, A.I. Pommrich, and A. Meyer, Phys. Rev. Lett., 2011, vol. 107, pp. 165902.

    Article  Google Scholar 

  23. D.G. Quirinale, G.E. Rustan, S.R. Wilson, M.J. Kramer, A.I. Goldman, and M. I. Mendelev, J. Phys.: Condens. Matter, 2015, vol. 27, pp. 085004.

    Article  Google Scholar 

  24. P. Lü and H.P. Wang, Sci. Rep., 2016, vol. 6, pp. 22641.

    Article  Google Scholar 

  25. S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia, and B. Wei, Acta Mater., 2014, vol. 69, pp. 355–64.

    Article  Google Scholar 

  26. Y. Ruan, Q.Q. Gu, P. Lü, H.P. Wang, and B. Wei, Mater. Des., 2016, vol. 112, pp. 239–45.

    Article  Google Scholar 

  27. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak: in Binary Alloy Phase Diagram, vol .3, ASM International, Materials Park, 1990

    Google Scholar 

  28. H.P. Wang, W.J. Yao, and B. Wei, Appl. Phys. Lett., 2006, vol. 89, pp. 201905.

    Article  Google Scholar 

  29. G.A. Colligan and B.J. Bayles, Acta Metall., 1962, vol. 8, pp.895.

    Article  Google Scholar 

  30. J.W. Lum, D.M. Matson, and M.C. Flemings, Metall. Trans. B, 1996, vol. 27, 865.

    Article  Google Scholar 

  31. J.F. Li, W.Q. Jie, S. Zhao, and Y.H. Zhou, Metall. Trans. A, 2007, vol. 38A, pp. 1806–16.

    Article  Google Scholar 

  32. S. Dobler, T.S. Lo, M. Plapp, A. Karma, and W. Kurz, Acta Mater., 2004, vol. 52, pp. 2795–808.

    Article  Google Scholar 

  33. M. Leonhardt, W. Löser, and H.-G. Lindenkreuz, Acta Mater., 2002, vol. 50, pp. 725–34.

    Article  Google Scholar 

  34. N. Adkins, P. Tsakiropoulos, Mater. Sci. and Technol., 1991, vol. 7, pp. 334–40.

    Article  Google Scholar 

  35. E.-S. Lee, and S. Ahn, Acta Metall. Mater., 1994, vol. 42, pp. 3231–43.

    Article  Google Scholar 

  36. E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, Butterworth Heinemann, Boston, 1992, pp. 1–43, Chap. 14.

    Google Scholar 

  37. D. Turnbull, J. Appl. Phys., 1950, vol. 21, pp. 1022.

    Article  Google Scholar 

  38. J. Lipton, W. Kurz, and R. Trivedi, Acta Metall., 1987, vol. 35, pp. 957–64.

    Article  Google Scholar 

  39. R. Trivedi, J. Lipton, and W. Kurz, Acta Metall., 1987, vol. 35, pp. 965–70.

    Article  Google Scholar 

  40. W.J. Boettinger, S.R. Coriell, and R. Trivedi: in Rapid Solidification Processing: Principle and Technologies IV. R. Mehrabian and P.A. Parrish, eds., Claitor’s, Baton Rouge, 1988.

Download references

Acknowledgments

Financial support by the National Natural Science Foundation of China (Grant Nos. 51474175, 51522102 and 51734008) is gratefully acknowledged. We thank the director of LMSS, Prof. B. Wei, for his consistent support. The authors are grateful to Dr. K. Zhou, Dr. J. Chang, Mr. M.X. Li, and Mr. B. Zhai for their generous help with the experiments and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Manuscript submitted August 31, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, P., Wang, H.P. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt. Metall Mater Trans B 49, 499–508 (2018). https://doi.org/10.1007/s11663-018-1189-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1189-8

Keywords

Navigation