Skip to main content
Log in

Static Thermochemical Model of COREX Melter Gasifier

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

COREX is one of the commercial smelting reduction processes. It uses the finer size ore and semi-soft coal instead of metallurgical coke to produce hot metal from iron ore. The use of top gas with high calorific value as a by-product export gas makes the process economical and green. The predictive thermochemical model of the COREX process presented here enables rapid computation of process parameters such as (1) required amount of ore, coal, and flux; (2) amount of slag and gas generated; and (3) gas compositions (based on the raw material and desired hot metal quality). The model helps in predicting the variations in process parameters with respect to the (1) degree of metallization and (2) post-combustion ratio for given raw material conditions. In general reduction in coal, flux, and oxygen, the requirement is concomitant with an increase in the degree of metallization and post-combustion ratio. The model reported here has been benchmarked using industrial data obtained from the JSW Steel Plant, India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from Gudenau et al.[40])

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

THM:

1 ton of hot metal

n b a :

Amount (in kg-mole) of any “a” in “b”, per kg-mole of Fe

p b a :

Composition of any “a” in “b” (in wt pct)

M a :

Moisture content in “a”

X :

Degree of metallization (in mol pct)

pcr:

Post-combustion ration (in vol pct)

ΔG :

Gibbs-free energy (kJ)

Bc :

Slag basicity

B :

Actual basicity

T :

Temperature (K)

ΔH m :

Heat of mixing per kg-mole of Fe (kJ)

ΔH s :

Sensible heat per kg-mole of Fe (kJ)

ΔH f :

Heat of formation per kg-mole of Fe (kJ)

ΔH e :

Heat of endothermic reaction per kg-mole of Fe (kJ)

coal:

Coal

L:

Limestone

D:

Dolomite

HM:

Hot metal

slag:

Slag

ore:

Ore

sg:

Surplus gas

tg:

Top gas

pc:

Post-combustion

mg:

Gas from the melter gasifier

r:

Reducing gas

MG:

Melter gasifier

DVC:

Devolatization of coal

sp:

Supplied

dem:

Demanded

o:

Output

A:

Active

References

  1. A. Hasanbeigi, M. Arens, and L. Price, Renew: Sustain. Energy Rev., 2014, vol. 33, pp. 645-58.

    Article  Google Scholar 

  2. T. Kuramochi, A. Ramírez, W. Turkenburg, and A. Faaij: Prog. Energy Combust. Sci., 2012, vol. 38, pp. 87-112.

    Article  Google Scholar 

  3. X. L. Zhou and Z. N. Du: Adv. Mater. Res., 2013, vol. 774-6, pp. 1430-3.

    Article  Google Scholar 

  4. J. K. Wright, I. F. Taylor, and D. K. Philp: Miner. Eng., 1991, vol. 4, pp. 983-1001.

    Article  Google Scholar 

  5. M.K. Shin, J.K. Yoon, and M. Tokuda: ISIJ Int., 1993, vol. 33, pp. 385-90.

    Article  Google Scholar 

  6. S. C. Lee, M. K. Shin, S. Joo, and J. K. Yoon: ISIJ Int., 1999, vol. 39, pp. 319-28.

    Article  Google Scholar 

  7. S.C. Lee, M.K. Shin, S. Joo, and J.K. Yoon: ISIJ Int., 2000, vol. 40, pp. 1073-9.

    Article  Google Scholar 

  8. S. Pal and A. K. Lahiri: Metall. Mater. Trans. B, 2003, vol. 34, pp. 103-14.

    Article  Google Scholar 

  9. S. Pal and A. K. Lahiri: ISIJ Int., 2006, vol. 46, p. 58.

    Article  Google Scholar 

  10. S. Pal and A. K. Lahiri: Metall. Mater. Trans. B, 2003, vol. 34, pp. 115-9.

    Article  Google Scholar 

  11. S. Wu, J. Xu, S. Yang, Q. Zhou, and L. Zhang: ISIJ Int., 2010, vol. 50, pp. 1032-9.

    Article  Google Scholar 

  12. S. Wu, J. Xu, J.I. Yagi, X. Guo, and L. Zhang: ISIJ Int., 2011, vol. 51, pp. 1344-52.

    Article  Google Scholar 

  13. J. Xu, S. Wu, M. Kou, and K. Du: ISIJ Int., 2013, vol. 53, pp. 576-82.

    Article  Google Scholar 

  14. M. Kou, S. Wu, K. Du, W. Shen, J. Sun, and Z. Zhang: ISIJ Int., 2013, vol. 53, pp. 1002-9.

    Article  Google Scholar 

  15. M. Kou, S. Wu, W. Shen, K. Du, L. Zhang, and J. Sun: ISIJ Int., 2013, vol. 53, pp. 2080-9.

    Article  Google Scholar 

  16. M. Kou, S. Wu, K. Du, W. Shen, X. Ma, M. Chen, and B. Zhao, JOM, 2015, vol. 67, pp. 459-66.

    Article  Google Scholar 

  17. M. Kou, S. Wu, G. Wang, B. Zhao, and Q. Cai: Steel Res. Int., 2015, vol. 86, pp. 686-94.

    Article  Google Scholar 

  18. H. Zhou, Z.G. Luo, T. Zhang, Y. You, Z.S. Zou, and Y. Shen: ISIJ Int., 2016, vol. 56, pp. 245-54.

    Article  Google Scholar 

  19. M.H. Bai, S.F. Han, W.Y. Zhang, K. Xu, and H. Long: Ironmak. Steelmak. 2016, pp. 1–7.

  20. Q. Hou, J. Li, and A. Yu: Steel Res. Int., 2015, vol. 86, pp. 626-35.

    Article  Google Scholar 

  21. W. Ying, Y. Sun, Z. Luo, and Z. Zou: Adv. Mater. Res., 2011, vol. 287-90, pp. 827-30.

    Article  Google Scholar 

  22. S. Sarkar and G. S. Gupta: Metall. Mater. Trans. B, 2007, vol. 38, pp. 965-75.

    Article  Google Scholar 

  23. G. Pan, X.L. Liu, and Z. Wen: Ironmak. Steelmak., 2013, vol. 40, pp. 255-62.

    Article  Google Scholar 

  24. J. Sun, Z. Luo, and Z. Zou: Powder Technol., 2015, vol. 281, pp. 159-66.

    Article  Google Scholar 

  25. S. C. Barman, K. P. Mrunmaya, and M. Ranjan: J. Iron Steel Res. Int., 2011, vol. 18, pp. 20-4.

    Article  Google Scholar 

  26. H.F. Li, Z.G. Luo, Z.S. Zou, J.J. Sun, L.H. Han, and Z.X. Di: J. Iron Steel Res. Int., 2012, vol. 19, pp. 36-42.

    Article  Google Scholar 

  27. B. Srivastava, S. K. Roy, and P. K. Sen: Metall. Mater. Trans. B, 2010, vol. 41, pp. 935-9.

    Article  Google Scholar 

  28. O. Almpanis-Lekkas, B. Weiss, and W. Wukovits: J. Clean. Prod., 2015, pp. 1–11.

  29. P. Sen, C. Biswas, P. Das, and G. G. Roy: Trans. Institutions Min. Metall. Sect. C Miner. Process. Extr. Metall., 2015, vol. 124, pp. 175-83.

    Google Scholar 

  30. A. Kadrolkar, S. K. Roy, and P. K. Sen: Metall. Mater. Trans. B, 2012, vol. 43, pp. 173-85.

    Article  Google Scholar 

  31. X. Liu, G. Pan, G. Wang, and Z. Wen: Ener. Fuels, 2011, vol. 25, pp. 5729-35.

    Article  Google Scholar 

  32. G. Pan, X.L. Liu, and Z. Wen: Adv. Mater. Res., 2011, vol. 228-9, pp. 930-6.

    Article  Google Scholar 

  33. G. Pan, Z. Wen, X. L. Liu, Y. K. Li, K. C. Zheng, and W. F. Wu: Ironmak. Steelmak., 2015, vol. 42, pp. 489-97.

    Article  Google Scholar 

  34. K. Du, S. Wu, M. Kou, W. Shen, and Z. Zhang: Steel Res. Int., 2014, vol. 85, pp. 466-76.

    Article  Google Scholar 

  35. L.H. Han, Z.-G. Luo, H. Zhou, Z.-S. Zou, and Y.-Z. Zhang: J. Iron Steel Res. Int., 2015, vol. 22, pp. 304-10.

    Article  Google Scholar 

  36. S. C. Koria, M. K. Barui, and L. K. Pandey: Scand. J. Metall., 1999, vol. 28, pp. 17-24.

    Google Scholar 

  37. S. C. Koria and M. K. Barui: Ironmak. Steelmak., 2000, vol. 27, pp. 348-54.

    Article  Google Scholar 

  38. Y. Qu, Z. Zou, and Y. Xiao: ISIJ Int., 2012, vol. 52, pp. 2186-93.

    Article  Google Scholar 

  39. R. J. Fruehan, K. Ito, and B. Ozturk: Steel Res., 1989, vol. 60, pp. 129-37.

    Article  Google Scholar 

  40. H. W. Gudenau, D. Senk, S. Wang, K. De Melo Martins, and C. Stephany: ISIJ Int., 2005, vol. 45, pp. 603-8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge JSW Steel Ltd., Toranagallu, Bellary, India, for providing the plant data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Srishilan.

Additional information

Manuscript submitted June 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srishilan, C., Shukla, A.K. Static Thermochemical Model of COREX Melter Gasifier. Metall Mater Trans B 49, 388–398 (2018). https://doi.org/10.1007/s11663-017-1147-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1147-x

Keywords

Navigation