Skip to main content
Log in

Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density (B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC (h 1) and the charge height (h 2), which emerges at the middle of coils (h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Liu, Y. Liu, C.Z. Qiu, C.X. Zhou, J.B. Li, H.Z. Li and Y.H. He: J. Alloy. Compd., 2015, vol. 640, pp. 298-304.

    Article  Google Scholar 

  2. L. Yu, X.P. Song, L. You, Z.H. Jiao and H.C. Yu: Scri. Mater., 2015, vol.109, pp. 61-63.

    Article  Google Scholar 

  3. K.P. Rao, Y.V.R.K. Prasad and K. Suresh: Mater. Design., 2011, vol. 32, pp. 4874-4881.

    Article  Google Scholar 

  4. K. Edalati, S. Toh, H. Iwaoka, M. Watanabe, Z. Horita, D. Kashioka, K. Kishida and H. Inui: Scri. Mater., 2012, vol. 67, pp. 814-817.

    Article  Google Scholar 

  5. X. Wu: Intermetallics, 2006, vol. 14, pp. 1114-1122.

    Article  Google Scholar 

  6. K. Gebauer: Intermetallics, 2006, vol. 14, pp. 355-360.

    Article  Google Scholar 

  7. M. Takeyama and S. Kobayashi: Intermetallics, 2005, vol. 13, pp. 993-999.

    Article  Google Scholar 

  8. X.Y. Gu, P.D. Han, C.L. Zhang, Z.Y. He, M.H. Dong, J.X. Xue and Y.P. Liu: Rare. Metal. Mat. Eng., 2012, vol. 41, pp. 437-441.

    Google Scholar 

  9. T. Tetsui, T. Kobayashi, T. Ueno and H. Harada: Intermetallics, 2012, vol. 31, pp. 274-281.

    Article  Google Scholar 

  10. J. Lapin, Z. Gabalcová and T. Pelachová: Intermetallics, 2011, vol. 19, pp. 396-403.

    Article  Google Scholar 

  11. J. Lapin, L. Ondrúš and O. Bajana: Mater. Sci. Eng. A, 2003, vol. 360, pp. 85-95.

    Article  Google Scholar 

  12. Q.Y. Xu, H. Zhang, X. Qi and B.C. Liu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 555–561.

    Article  Google Scholar 

  13. H. Saari, J. Beddoes, D.Y. Seo and L. Zhao: Intermetallics, 2005, vol. 13, pp. 937-943.

    Article  Google Scholar 

  14. S. Sarkar, V. Singh, S.K. Ajmani, R. Ranjan and K. Rajasekar: ISIJ. Int., 2016, vol. 56, pp. 2181-2190.

    Article  Google Scholar 

  15. H.J. Choe, T. Teral, I. Miyazaki, S. Yamamoto, M. Yonemura, T. Fukuda and T. Kakeshita: ISIJ. Int., 2016, vol. 56, pp. 1652-1655.

    Article  Google Scholar 

  16. W.D. Xuan, H. Liu, J. Lan, C.J. Li, Y.B. Zhong, G.H. Cao and Z.M. Ren: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3231-3236.

    Article  Google Scholar 

  17. J.B. Yu, D.F. Du, Z.M. Ren, Y. Fautrelle, R. Moreau and X. Li: ISIJ. Int., 2017, vol. 57, pp. 337-342.

    Article  Google Scholar 

  18. M. Ščepanskis, M. Sarma, P. Vontobel, P. Trtik, K. Thomsen, A, Jakovičs and T. Beinerts: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1045-1054.

    Article  Google Scholar 

  19. R.R. Chen, S.L. Dong, J.J. Guo, H.S. Ding, Y.Q. Su and H.Z. Fu: Mater. Design., 2015, vol. 89, pp. 492-506.

    Article  Google Scholar 

  20. R.R. Chen, S.L. Dong, J.J. Guo, H.S. Ding, Y.Q. Su and H.Z. Fu: J. Alloy. Compd., 2015, vol. 648, pp. 667-675.

    Article  Google Scholar 

  21. H. Kubota, A. Tomizawa, K. Yamamoto, N. Okada, T. Hama and H. Takuda: ISIJ. Int., 2014, vol. 54, pp. 1856-1865.

    Article  Google Scholar 

  22. M. Pokusova and M. Muragas: ISIJ. Int., 2015, vol. 55, pp. 1669-1676.

    Article  Google Scholar 

  23. L. Feng and W.Y. Shi: ISIJ. Int., 2016, vol. 56, pp. 50-56.

    Article  Google Scholar 

  24. J. Zeng, W.Q. Chen, S.L. Zhang, Y. Li and Q.L. Wang: ISIJ. Int., 2015, vol. 55, pp. 2142-2149.

    Article  Google Scholar 

  25. A. Kao, P.D. Lee and K. Pericleous: ISIJ. Int., 2014, vol. 54, pp. 1283-1287.

    Article  Google Scholar 

  26. Z.Y. Lu, Y.K. Zhang, Z.M. Ren, Y. Fautrelle and X. Li: ISIJ. Int., 2017, vol. 57, pp. 84-90.

    Article  Google Scholar 

  27. J.R. Yang, R.R. Chen, H.S. Ding, J.J. Guo, Y.Q. Su and H.Z. Fu: J. Mater. Process. Tech., 2013, vol. 213, pp. 1355-1363.

    Article  Google Scholar 

  28. A. Kartavykh, V. Ginkin, S. Ganina, S. Rex, U. Hecht, B. Schmitz and D. Voss: Intermetallics, 2011, vol. 19, pp. 769-775.

    Article  Google Scholar 

  29. A. Umbrashko, E. Baake, and B. Nacke: Compel, 2005, vol. 24, pp. 314-323.

    Article  Google Scholar 

  30. H.T. Bui, S.J. Hwang: Int. J. Heat Mass Transfer, 2015, vol. 86, pp. 16-30.

    Article  Google Scholar 

  31. Y. Cho, Y. Oh, K. Yi, S. Chung and J. Shim: Model. Simul. Mater. Sc, 1996, vol. 4, pp. 11-22.

    Article  Google Scholar 

  32. F. Bioul and F. Dupret: IEEE. Trans. Magn., 2005, vol. 41, pp. 2496-2505.

    Article  Google Scholar 

  33. R.R. Chen, J.R. Yang, H.S. Ding, F. Huang, Y.Q. Su, J.J. Guo and H. Z. Fu: T. Nonferr. Metal. Soc., 2012, vol. 22, pp. 404-410.

    Article  Google Scholar 

  34. R.R. Chen, J.R. Yang, F. Huang, Y.Q. Su, J.J. Guo and H.Z. Fu: China. Foundry, 2012, vol. 9, pp. 15-19.

    Google Scholar 

  35. R.R. Chen, J.R. Yang, H.S. Ding, F. Huang, Y.Q. Su, J.J. Guo and H.Z. Fu: J. Mater. Process. Tech., 2012, vol. 212, pp. 1934-1940.

    Article  Google Scholar 

  36. J.R. Yang, R.R. Chen, H.S. Ding, Y.Q. Su, J.J. Guo, F. Huang and H.Z. Fu: Compel, 2013, vol. 32, pp. 997-1008.

    Article  Google Scholar 

  37. J.R. Yang, R.R. Chen, J.J. Guo and H.Z. Fu: Int. J. Heat Mass Transfer, 2016, vol. 100, pp. 131-138.

    Article  Google Scholar 

  38. L. Feng and W.Y. Shi: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1895-1901.

    Article  Google Scholar 

  39. C.J. Carpenter: IEE. P-Elect. Power. Appl., 1980, vol. 124, pp. 1026-1034.

    Google Scholar 

  40. J.P. Webb and B. Forghani: IEEE. Trans. Magn., 1993, vol. 29, pp. 2461-2463.

    Article  Google Scholar 

  41. J. Kumbernuss, C. Jian, J.H. Wang, H.X. Yang and W.N. Fu: Appl. Energ., 2012, vol. 90, pp. 148-153.

    Article  Google Scholar 

  42. J. Lee, D.M. Matson, S. Binder, M. Kolbe, D. Herlach, and R.W. Hyers: Metall. Mater. Trans. B, 2013, vol. 45B, pp. 1018-1023.

    Google Scholar 

  43. J. Lee, X. Xiao, D.M. Matson, and R.W. Hyers: Metall. Mater. Trans. B, 2014, vol. 46B, pp. 199-207.

    Google Scholar 

  44. E. Westphal, A. Muiznieks and A. Muhlbauer: IEEE. Trans. Magn., 1996, vol. 32, pp. 1601-1604.

    Article  Google Scholar 

  45. S.C. Chu, S.S. Lian and F.K. Chen: Acta Metall. Sin., 2004, vol. 266, pp. 229-237.

    Google Scholar 

  46. D. Jiang and M. Zhu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3446-3458.

    Article  Google Scholar 

  47. D.B. Jiang and M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 444-455.

    Article  Google Scholar 

  48. W. Assmus, C. Gross, A. Muiznieks, G. Raming, A. Muhlbauer and C. Stenzel: Cryst. Res. Technol., 1999, vol. 34, pp. 319-328.

    Article  Google Scholar 

  49. L.N.W. Damoah, L.F. Zhang, High-frequency electromagnetic purification of silicon, Metall. Mater. Trans. B, 2015, vol. 46, pp. 2514-2528.

    Article  Google Scholar 

  50. A. Widjaja, A. Needleman and E. Giessen: Model. Simul. Mater. Sc., 1998, vol. 3, pp. 473-484.

    Google Scholar 

  51. P.A. Davidson: An Introduction to Magnetohydrodynamics, Cambridge University Press, New York, 2001, pp. 393.

    Book  Google Scholar 

  52. A.V. Kartavykh, V.P. Ginkin and S.M. Ganina: J. Alloy. Compd., 2014, vol. 586, pp. 267-273.

    Article  Google Scholar 

  53. G. Nie, H.S. Ding, R.R. Chen, J.J. Guo and H.Z. Fu, Mater. Design., 2012, vol. 39, pp. 350-357.

    Article  Google Scholar 

  54. X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, H.L. Wang and G.L. Chen: Scri. Mater., 2011, vol. 65, pp. 61-64.

    Article  Google Scholar 

  55. S.L. Dong, R.R. Chen, J.J. Guo, H.S. Ding, Y.Q. Su and H.Z. Fu: Mater. Design., 2015, vol. 67, pp. 390-397.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51274076) and the National Science Fund for Distinguished Young Scholars (NSFC51425402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohua Yang.

Additional information

Manuscript submitted April 11, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Yang, Y., Gong, X. et al. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible. Metall Mater Trans B 48, 3345–3358 (2017). https://doi.org/10.1007/s11663-017-1068-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1068-8

Keywords

Navigation