Skip to main content
Log in

Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of Al2O3 and Al2O3/SiO2 ratio on the sulfide capacity of the molten aluminosilicate CaO-SiO2-Al2O3-MgO-TiO2 slag system with high Al2O3 content was measured at 1773 K (1500 °C) using a metal-slag equilibration method. The sulfide capacity between silicate-based and aluminate-based slag was also compared based on the thermodynamic analysis and structural characteristics of melts. At a fixed CaO/SiO2 ratio of 1.20, the sulfide capacity decreases with increasing Al2O3 content primarily due to the decrease of free oxygen (FO) and the activity of O2–. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes a significant increase in the sulfide capacity of the slags, and a slight increase is found when the Al2O3/SiO2 ratio is more than 0.79. The effect of the substitution of silica by alumina on the sulfide capacity of the slags was not only due to an increase in the activity of basic oxides (\( a_{{{\text{O}}^{2 - } }} \)) but also to a decrease in the stability of sulfide (\( \gamma_{{{\text{S}}^{2 - } }} \)). Moreover, \( a_{{{\text{O}}^{2 - } }} \) and \( \gamma_{{{\text{S}}^{2 - } }} \) increase in a similar degree, and the weaker binding electronegativity of Al3+ with oxygen atoms results in a slight increase in the final sulfide capacity in the aluminate-based slag system with Al2O3 ↔ SiO2 substitution. Five different sulfide capacity models were employed to predict the sulfide capacity, and the iso-sulfide capacity distribution diagram based on the Young’s model was obtained in the high Al2O3 corner of the diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.H. Park and G.H. Park: ISIJ Int., 2012, vol. 52, pp. 764–69.

    Article  Google Scholar 

  2. G.H. Park, Y.B. Kang, and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.

    Article  Google Scholar 

  3. M.K. Cho, J. Cheng, J.H. Park, and D.J. Min: ISIJ Int., 2010, vol. 50, pp. 215–21.

    Article  Google Scholar 

  4. T. Tanaka, Y. Ogiso, M. Ueda, and J. Lee: Tetsu-to-Hagane, 2009, vol. 95, pp. A275–A281.

    Article  Google Scholar 

  5. J. Zhang, X. Lv, Z. Yan, Y. Qin, and C. Bai: Ironmaking & Steelmaking, 2016, vol. 5, pp. 378–84.

    Article  Google Scholar 

  6. A. Shankar, M. Gornerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 941–47.

    Article  Google Scholar 

  7. Y. Taniguchi, L.J. Wang, N. Sano, and S. Seetharaman: Metall. Mater. Trans B, 2012, vol. 43B, pp. 477–84.

    Article  Google Scholar 

  8. S.J. Jeong, T.S. Kim, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 545–53.

    Article  Google Scholar 

  9. Y. Gao, Q. Liu, and L. Bian: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 229–32.

    Article  Google Scholar 

  10. P. Yan, X. Guo, S. Huang, J. Dyck, M. Guo, and B. Blanpain: ISIJ Int., 2013, vol. 53, pp. 459–67.

    Article  Google Scholar 

  11. L. Wang, M. Hayashi, K.C. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1338–43.

    Article  Google Scholar 

  12. R. Moretti and G. Ottonello: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 399–410.

    Article  Google Scholar 

  13. D. Liang, Z. Yan, X. Lv, J. Zhang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 573–81.

    Article  Google Scholar 

  14. Z. Yan, X. Lv, D. Liang, J. Zhang, and C. Bai: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1–8.

    Google Scholar 

  15. M.M. Nzotta, M. Andreasson, P. Jonsson, and S. Seetharaman: Scand. J. Metall., 2000, vol. 29, pp. 177–84.

    Article  Google Scholar 

  16. M.M. Nzotta, D. Sichen, and S. Seetharaman: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 909–20.

    Article  Google Scholar 

  17. M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1998, vol. 38, pp. 1170–79.

    Article  Google Scholar 

  18. M.M. Nzotta, R. Nilsson, D. Sichen, and S. Seetharaman: Ironmaking & Steelmaking, 1997, vol. 24, pp. 300–05.

    Google Scholar 

  19. E. Drakaliysky, N.S. Srinivasan, and L.I. Staffansson: Scand. J. Metall., 1991, vol. 20 (4), pp. 251–55.

    Google Scholar 

  20. D.J. Sosinsky and I.D. Sommerville: Metall. Mater. Trans. B, 1986, vol. 17B, pp. 331–37.

    Article  Google Scholar 

  21. R. Young, J. Duffy, G. Hassall, and Z. Xu: Ironmaking and Steelmaking, 1992, vol. 19, pp. 265–68.

    Google Scholar 

  22. G. Zhang, K. Chou, and U. Pal: ISIJ Int., 2013, vol. 53, pp. 761–67.

    Article  Google Scholar 

  23. www.factsage.com (accessed Sept. 2011)|.

  24. G.G. Hatch and J. Chipman: J. Met., 1949, vol. 1, pp. 274–80.

    Google Scholar 

  25. E.T. Turkdogan: Metall. Mater. Trans. B, 1978, vol. 9B, pp. 163–79.

    Article  Google Scholar 

  26. A. Shankar: Ironmaking and Steelmaking, 2006, vol. 33, pp. 413–18.

    Article  Google Scholar 

  27. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 1–24.

    Google Scholar 

  28. K. Kim, W.W. Huh, and D.J. Min: Metall. Mater. Trans. B, 2013, vol. 45B, pp. 889–96.

    Google Scholar 

  29. X. Tang and C. Xu: ISIJ Int., 1995, vol. 35, pp. 367–71.

    Article  Google Scholar 

  30. C. Shi, X. Yang, J. Jiao, C. Li, and H. Guo: ISIJ Int., 2010, vol. 50, pp. 1362–72.

    Article  Google Scholar 

  31. D.H. Woo and H.G. Lee: J. Am. Ceram. Soc., 2010, vol. 93, pp. 2098–2106.

    Google Scholar 

  32. C.J. Fincham and F.D. Richardson: Proc. R. Soc. A: Math., Phys., Eng. Sci., 1954, vol. 223, pp. 40–62.

    Article  Google Scholar 

  33. J.A. Duffy and M.D. Ingram: J. Am. Chem. Soc., 1971, vol. 93, pp. 6448–54.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 51234010), Program for New Century Excellent Talents in University, and Program for the Youth Top-notch Talents of Chongqing (Grant No. 20151001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Additional information

Manuscript submitted March 21, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Lv, X., Pang, Z. et al. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity. Metall Mater Trans B 48, 2607–2614 (2017). https://doi.org/10.1007/s11663-017-1031-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1031-8

Keywords

Navigation