Skip to main content
Log in

Steel Alloy Hot Roll Simulations and Through-Thickness Variation Using Dislocation Density-Based Modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Pietrzyk, C. Roucoules and P.D. Hodgson: ISIJ Int., 1995, vol. 35(5), pp. 531–41.

    Article  Google Scholar 

  2. J. Lin, Y. Liu, D.C.J. Farrugia and M. Zhou: Phil. Mag., 2005, vol. 85(18), pp. 1967–87.

    Article  Google Scholar 

  3. B. Pereda, P. Uranga, D. Stalheim, R. Barbosa and M.A. Rebellato: in HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015: Conference Proceedings, Wiley, Hoboken, NJ, 2015, pp. 309–16.

  4. A. Harun, E. Holm, M. Clode and M. Miodownik: Acta Mater., 2006, vol. 54, pp. 3261–73.

    Article  Google Scholar 

  5. O. Ivasishin, S.S.N. Vasiliev and S. Semiatin: Mater. Sci. Eng. A, 2006, vol. 433, pp. 216–32.

    Article  Google Scholar 

  6. F. Chen and Z. Cui: Model. Simul. Mater. Sci., 2012, vol. 20(4). p. 045008.

    Article  Google Scholar 

  7. H. Hallberg and M. Ristinmaa: Comp. Mater. Sci., 2013, vol. 67, pp. 373–83.

    Article  Google Scholar 

  8. E. Popova, Y. Staraselski, A. Brahme, R. Mishra and K. Inal: Int. J. Plasticity, 2015, vol. 66, pp. 85–102.

    Article  Google Scholar 

  9. N. Moelans, A. Godfrey, Y. Zhang and D.J. Jensen: Phys. Rev. B, 2013, vol. 88, p. 054103.

    Article  Google Scholar 

  10. T. Takaki, C. Yoshimoto, A. Yamanaka and Y. Tomita: Int. J. Plasticity, 2014, vol. 52 pp. 105–16.

    Article  Google Scholar 

  11. L. Chen, J. Chen, R. Lebensohn, Y. Ji, T. Heo, S. Bhattacharyya, K. Chang, S. Mathaudhu, Z. Liu and L.Q. Chen: Comput. Method. Appl. M., 2015, vol. 285, pp. 829–48.

    Article  Google Scholar 

  12. P. Zhao, T. Song En Low, Y. Wang and S.R. Niezgoda: Int. J. Plasticity, 2016, vol. 80, pp. 38-55.

    Article  Google Scholar 

  13. D. Weygand, Y. Brechet and J. Lepinoux: Philos. Mag. B, 1998, vol. 78, pp. 329–52.

    Article  Google Scholar 

  14. Y. Mellbin, H. Hallberg and M. Ristinmaa: Model. Simul. Mater. Sc., 2016, vol. 24(7), p. 075004.

    Article  Google Scholar 

  15. M. Bernacki and R.L.T. Coupez: Scripta Mater., 2011, vol. 64, pp. 525–28.

    Article  Google Scholar 

  16. H. Hallberg: Model. Simul. Mater. Sc., 2013, vol. 21(8). p. 085012.

    Article  Google Scholar 

  17. T.J. Baron, K. Khlopkov, T. Pretorius, D. Balzani, D. Brands and J. Schröder:Steel Res. Int., 2016, vol. 87(1), pp. 37–45.

    Article  Google Scholar 

  18. H. Ji, J. Liu, B. Wang, X. Fu, W. Xiao and Z. Hu: J. Mater. Process. Tech., 2017, vol. 240, pp. 1–11.

    Article  Google Scholar 

  19. F. Montheillet, O. Lurdos and G. Damamme: Acta Mater., 2009, vol. 57(5), pp. 1602–12.

    Article  Google Scholar 

  20. P. Bernard, S. Bag, K. Huang and R.E. Logé: Mater. Sci. Eng. A, 2011, vol. 528(24), pp. 7357–67.

    Article  Google Scholar 

  21. H. Riedel and J. Svoboda: Mater. Sci. Eng. A, 2016, vol. 665, pp. 175–83.

    Article  Google Scholar 

  22. GJ. Jansen van Rensburg: Development and Implementation of State Variable Based User Materials in Computational Plasticity. PhD Thesis, The University of Pretoria, Pretoria, 2016.

  23. A.A. Brown and D.J. Bammann: Int. J. Plasticity, 2012, vol. 32–33, pp. 17–35.

    Article  Google Scholar 

  24. R. Maubane, K. Banks, W. Stumpf, C. Siyasiya and A. Tuling: Adv. Mater. Res., 2014, vol. 1019, pp. 339–46.

    Article  Google Scholar 

  25. Y.P. Varshni: Phys. Rev. B, 1970, vol. 2(10), pp. 3952–58.

    Article  Google Scholar 

  26. P.S. Follansbee and U.F. Kocks: Acta Mater., 1998, vol. 36(1), pp. 81–93.

    Article  Google Scholar 

  27. Y. Estrin: in Unified Constitutive Laws of Plastic Deformation, A. Krausz, and K. Krausz, eds., Academic Press, San Diego, 1996, ch. 2, pp. 69–106.

  28. S. Kok, A.J. Beaudoin and D.A. Tortorelli: Acta Mater., 2002, vol. 50(7), pp. 1653–67.

    Article  Google Scholar 

  29. U.F. Kocks: J. Eng. Mater-T ASME, 1976, vol. 98(1), pp. 76–85.

    Article  Google Scholar 

  30. J.E. Song and D.L. McDowell: in Grain Scale Crystal Plasticity Model with Slip and Microtwinning for a Third Generation Ni-Base Disk Alloy. John Wiley & Sons, Hoboken, 2012, pp. 159–66.

    Google Scholar 

  31. J.W. Cahn and W.C. Hagel: in Decomposition of Austenite by Diffusional Processes, Z.D. Zackay and H.I. Aaronson, eds., Interscience, 1962, pp. 131–96.

  32. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238(2), pp. 219–74.

    Article  Google Scholar 

  33. S.P. Chen, S. Zwaag and I. Todd: Metall. Mater. Trans. A, 2002, vol. 33(3), pp. 529–37.

    Article  Google Scholar 

  34. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, London, 1996.

    Google Scholar 

  35. Y.P. Li, E. Onodera, H. Matsumoto and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40(4), pp. 982-90.

    Article  Google Scholar 

  36. A.P. Grudev: M. Metall. Publ., 1973, p. 288

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Jansen Van Rensburg.

Additional information

Manuscript submitted October 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen Van Rensburg, G.J., Kok, S. & Wilke, D.N. Steel Alloy Hot Roll Simulations and Through-Thickness Variation Using Dislocation Density-Based Modeling. Metall Mater Trans B 48, 2631–2648 (2017). https://doi.org/10.1007/s11663-017-1024-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1024-7

Keywords

Navigation