Skip to main content
Log in

Preparation and Characterization of Plasma Electrolytic Oxidation Coating on 5005 Aluminum Alloy with Red Mud as an Electrolyte Additive

  • Topical Collection: Physical and Numerical Simulations of Materials Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A coating with red mud as an electrolyte additive was applied to 5005 aluminum alloy using plasma electrolytic oxidation (PEO). The phase composition of the coating was investigated using X-ray diffraction. Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS) was used to determine the microstructure and composition profiles of the coating. The coating/substrate adhesion was determined by scratch testing. The corrosion behaviors of the substrate and coating were evaluated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results indicated that the PEO coating with red mud consisted mainly of α-Al2O3 and γ-Al2O3, with small amounts of Fe2O3, CaCO3, and CaTiO3. The surface of the coating was the color of the red mud. The coating had a uniform thickness of about 80 μm and consisted of two main layers: a 6-μm porous outer layer and a 74-μm dense inner layer, which showed typical metallurgical adhesion (coating/substrate adhesion strength of 59 N). The coating hardness was about 1142 HV, much higher than that of the substrate (60 HV). The corrosion potential E corr and corrosion current density i corr of the coating were estimated to be −0.743 V and 3.85 × 10−6 A cm−2 from the PDP curve in 3.5 wt pct NaCl solution, and the maximum impedance and phase angle of the coating were 11 000 Ω and −67 deg, respectively, based on EIS. PEO coating with red mud improved the surface properties and corrosion resistance of 5005 aluminum alloy. This study also shows a potential method for reusing red mud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.T. Ma, X.Y. Bi, J.H. You, H.Z. Lu: Mater. Mech. Eng, 2010, vol. 34, pp. 1–4.

    Google Scholar 

  2. Z.C. Oter, Y. Gencer and M. Tarakci: J. Alloys Compd, 2015, vol. 650, pp. 185–92.

    Article  Google Scholar 

  3. C.S. Dunleavy, I.O. Golosnoy, J.A. Curran and T.W. Clyne: Surf. Coat. Technol, 2009, vol. 203, pp. 3410–19.

    Article  Google Scholar 

  4. M. Petkovic, I. Belca, S. Stojadinovic and L. Zekovic: Surf. Coat. Technol, 2009, vol. 203, pp. 3000–04.

    Article  Google Scholar 

  5. P. Wang, J.P. Li, Y.C. Guo, J.L. Wang, Z. Yang and M.X. Liang: J. Alloys Compd, 2016, vol. 682, pp. 357–65.

    Article  Google Scholar 

  6. M. Mišík, I.T. Burke, M. Reismüller, C. Pichler, B. Rainer, K. Mišíková, W.M. Mayes and S. Knasmueller: Sci. Total Environ, 2014, vol. 493, pp. 883–90.

    Article  Google Scholar 

  7. W.C. Liu, X.Q. Chen, W.X. Li, Y. F. Yu and K. Yan: J. Clean. Prod, 2014, vol. 84, pp. 606–10.

    Article  Google Scholar 

  8. E.P. Manfroi, M. Cheriaf and J.C. Rocha: Constr. Build. Mater, 2014, vol. 67, pp. 29–36.

    Article  Google Scholar 

  9. R.K. Paramguru, P.C. Rath and V.N. Misra: Miner. Process. Extr. Metall. Rev, 2004, vol. 26, pp. 1–29.

    Article  Google Scholar 

  10. S. Maneesh and S.N. Upadhayay: Cem. Concr. Res, 1997, vol. 7, pp. 1037–46.

    Google Scholar 

  11. N. Yalçın and V. Sevinç: Ceram Int., 2000, vol. 26, pp. 485–93.

    Article  Google Scholar 

  12. Q. Zhu and B. Qi: Light Metals, 2009, vol. 8, pp. 7–10.

    Google Scholar 

  13. Y. Li, C. Liu, Z. Luan, X. Peng, C. Zhu, Z. Chen, Z. Zhang, J. Fan and Z. Jia: J. Hazard. Mater., 2006, vol. 137, pp. 74–83.

    Google Scholar 

  14. G. Jones, G. Joshi, M. Clark and D. Mcconchie: Environ. Chem., 2006, vol. 3, pp. 297–303.

    Article  Google Scholar 

  15. B.Z. Uysal, I. Aksahin and H. Yucel: Ind. Eng. Chem. Res, 1998, vol. 27, pp. 434–39.

    Article  Google Scholar 

  16. E. Erçağ and R. Apak: J. Chem. Technol. Biotechnol, 1997, vol. 70, pp. 241–46.

    Article  Google Scholar 

  17. Abhilash, S. Sinha, M.K. Sinha and B.D Pandey: Int. J. Miner. Process, 2014, vol. 127, pp. 70–73.

    Article  Google Scholar 

  18. Y. Çengeloğlu, E. Kir and M. Ersöz: J. Colloid Interface Sci, 2001, vol. 244, pp. 342–46.

    Article  Google Scholar 

  19. R.A. Pepper, S.J. Couperthwaite and G.J. Millar: Miner. Eng, 2016, vol. 99, pp. 8–18.

    Article  Google Scholar 

  20. Y.Y. Liu, B.C. Zhao, Y. Tang, P. Y. Wan, Y.M. Chen and Z.J. Lv: Thermochim. Acta, 2014, vol. 588, pp. 11–15.

    Article  Google Scholar 

  21. G.H. Li, M.X. Liu, M.J. Rao, T. Jiang, Z.Q. Zhuang and Y.B. Zhang: J. Hazard. Mater, 2014, vol. 280, pp. 774–80.

    Article  Google Scholar 

  22. A. Collazo, D. Fernández, M. Izquierdo, X.R. Nóvoa and C. Pérez: Prog. Org. Coat, 2005, vol. 52, pp. 351–58.

    Article  Google Scholar 

  23. A. Collazo, A. Covelo, X.R. Nóvoa and C. Pérez: Prog. Org. Coat, 2012, vol. 74, pp. 334–42.

    Article  Google Scholar 

  24. H. Sutar, S.C. Mishra, S.K. Sahoo, A. Satapathy and V. Kumar: Nat. Sci., 2012, vol. 4, pp. 832–38.

    Google Scholar 

  25. W. Krysmann, P. Kurze, K.H. Dittrich and H.G. Schneider: Crystl Res. Technol, 1984, vol. 19, pp. 973–79.

    Article  Google Scholar 

  26. R.O. Hussein, D.O. Northwood and X. Nie: J. Vac. Sci. Technol. A, 2010, vol. 28, pp. 766–73.

    Article  Google Scholar 

  27. A. Ayday and M. Durman: Acta Phys. Pol, 2015, vol. 127, pp. 886–87.

    Article  Google Scholar 

  28. S. Moon and Y. Jeong: Corros. Sci, 2009, vol. 51, pp. 1506–12.

    Article  Google Scholar 

  29. Y.J. Guan, Y. Xia and G. Li: Surf. Coat. Technol, 2008, vol. 202, pp. 4602–12.

    Article  Google Scholar 

  30. W.B. Xue, X.L. Shi, M. Hua and Y.L. Li: Appl. Surf. Sci, 2007, vol. 253, pp. 6118–24.

    Article  Google Scholar 

  31. Z.B. Wang, J. Lu and K. Lu: Surf. Coat. Technol, 2006, vol. 201, pp. 2796-801.

    Article  Google Scholar 

  32. H.R. Bakhsheshi-Rad, M. Abdellahi, E. Hamzah, A.F. Ismail and M. Bahmanpour: J. Alloys Compd, 2016, vol. 687, pp. 630–42.

    Article  Google Scholar 

  33. M. Sonebi and A. Cevik: Constr. Build. Mater., 2009, vol. 23, pp. 2614–22.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported financially by the Center of Ecological Collaborative Innovation for the Aluminum Industry in Guangxi, the BaGui Scholars Program Foundation, and the Scientific Research Foundation of Guangxi University (XJZ140258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Zeng.

Additional information

Manuscript submitted December 03, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zeng, J. & Wang, Y. Preparation and Characterization of Plasma Electrolytic Oxidation Coating on 5005 Aluminum Alloy with Red Mud as an Electrolyte Additive. Metall Mater Trans B 48, 2223–2231 (2017). https://doi.org/10.1007/s11663-017-1013-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1013-x

Keywords

Navigation