Skip to main content
Log in

Thermoelastic Stability Analysis of Solidification of Pure Metals on a Coated Planar Mold of Finite Thickness

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A theoretical model for investigating the thermoelastic instability/mechanism during pure metal solidification on a coated mold of finite thickness is developed. This study extends the previous theoretical works on growth instability during solidification process by investigating the effects of an added coating layer. Mold coating is one of the most important factors controlling the heat transfer rate, and hence it has a very important role on the solidification rate and the development of microstructure. In this model, thermal and mechanical problems are coupled through the pressure-dependent contact resistances at mold/coating and coating/shell interfaces. The thermal diffusivities of solidified shell, coating, and mold materials are assumed to be zero. This assumption provides us to solve heat transfer problem analytically. A linear perturbation method is used to simplify complexity of the modeled solidification problem, and governing equations are solved numerically using a variable step variable order predictor–corrector algorithm. The effects of coating layer thickness and coupling rates at shell/coating and coating/mold interfaces are investigated in detail. The results show that coating thickness has destabilizing effect on the growth instability when the coupling rates are small. However, when these coupling rates are increased individually or together, the destabilizing effect of coating thickness turns to be stabilizing. On the other hand, coupling rates have generally destabilizing effects on the process, but an increase in the thickness of coating leads to diminishing coupling rates effect in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Sugitani, M. Nakamura, M. Okuda, M. Kawasaki, and S. Miyahara: Trans. Iron Steel Inst. Jpn.,1992, vol. 25, pp. B–91.

  2. J. Cisse, G. Cole and G. Bolling: AFS Cast Met. Res. J., 1971, 7, 158–161.

    Google Scholar 

  3. S. Singh and K. Blazek: J. Metals, 1974, 10, pp. 17–27.

    Google Scholar 

  4. P.J. Wray: Metall. Mater. Trans. B, 1981, 12, 167–176.

    Article  Google Scholar 

  5. Richmond O. Richmond, L.G. Hector Jr. and J.M. Fridy: J. Appl. Mech., 1990, 57, 529-536.

    Article  Google Scholar 

  6. N.Y. Li and J.R. Barber: Int. J. Mech. Sci., 1991, 33, 945-959.

    Article  Google Scholar 

  7. F. Yigit, N.Y. Li and J.R. Barber: J. Therm. Stresses, 1993, 16-3, 285-309.

    Article  Google Scholar 

  8. F. Yigit and J.R. Barber: Int. J. Mech. Sci. 1994, 36 (8), 707-723.

    Article  Google Scholar 

  9. P.N. Anyalebechi: Mater. Process. Fundam. Proc. Symp., 2007, pp. 31–47.

  10. P.N. Anyalebechi: Mater. Process. Fundam. Proc. Symp., 2007, pp. 49–62.

  11. H. Murakami, M. Suzuki, T. Kitagawa and S.J. Miyahara: Trans. Iron Steel Inst. Jpn.,1992, 78, 105-112.

    Google Scholar 

  12. L.G. Hector Jr., W.S. Kim and J. Howarth: J. Therm. Stresses, 1999, 22 (2), 125-158.

    Article  Google Scholar 

  13. L.G. Hector Jr., J. Howarth, O. Richmond and W.S. Kim: J. Appl. Mech., 2000, 67, 155-164.

    Article  Google Scholar 

  14. F. Yigit and L.G. Hector Jr.: J. Appl. Mech., 2000, 67, 66-76.

    Article  Google Scholar 

  15. F. Yigit and L.G. Hector Jr.: J. Appl. Mech., 2000, 67, 77-86.

    Article  Google Scholar 

  16. H. Jafari, M.H. Idris, A. Ourdjini, M. Karimian and G. Payganeh: J. Iron Steel Res. Int., 2010, 17 (12), 38-45.

    Article  Google Scholar 

  17. M. Karimian, A. Ourdjini, M.H. Idris and H. Jafari: Trans. Nonferrous Met. Soc. China, 2012, 22, 2092-2097

    Article  Google Scholar 

  18. M. Sands and S. Shivkumar: J. Mater. Sci., 2003, 38, 667-673

    Article  Google Scholar 

  19. A. Hamasaiid, M.S. Dargusch, C.J. Davidson, S. Tovar, T. Loulou, F. Rezai-Aria and G. Dour: Metall. Mater. Trans. A, 2007, 38A, 1303-1316.

    Article  Google Scholar 

  20. O. Salas, K. Kearns, S. Carrera, and J.J. Moore: Surf. Coat. Technol., 2003, 172, 117-127.

    Article  Google Scholar 

  21. S.C. Chen, Y. Chang, Y.P. Chang, Y.C. Chen and C.Y. Tseng: Int. Commun. Heat Mass Transfer, 2009, 36, 1030-1035.

    Article  Google Scholar 

  22. Lu H.S. Lu, J. Yaokawa and K. Anzai, Materials Trans., 2006, 27, 883-888

    Google Scholar 

  23. M. Borouni, B. Niroumand and M.H. Fathi: Materials and Technology, 2014, 48 (4), 473-477.

    Google Scholar 

  24. M. H. Demir and F. Yigit,: Int. J. Solids Struct., 2016, 99, 12-27.

    Article  Google Scholar 

  25. G.D. Byrne and A.C. Hindmarsh: ACM Trans. On Math. Soft. 1975, 1, 71-96.

    Article  Google Scholar 

  26. F. Yigit: J. Therm. Stresses, 1998, 21 (1), 55-81.

    Article  Google Scholar 

  27. J. Dundurs: Mech. Res. Commun.. 1974, 1, 121-124.

    Article  Google Scholar 

  28. R. E. Boltz and G. L. Tuve: CRC Handbook of Tables for Applied Engineering and Science, CRC Press, Boca Raton, FL, 1984.

    Google Scholar 

  29. T. Baumeister, E. A. Avallone, and T. Baumeister: “Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill, New York, 1978.

    Google Scholar 

  30. L.D. Lucas: Mem. Sci. Rev. Met., 1972, 69 (6), 479-492.

    Google Scholar 

  31. H.H. Wawra: Arch. Eisenhuettenwes. 1974, 45 (5), 317-320.

    Google Scholar 

  32. H.M. Ledbetter and E.R. Naimon: J. Phys. Chem. Ref. Data, 1974, 3, 897-935.

    Article  Google Scholar 

  33. Y.S. Touloukian, R.W. Powell, C.Y. Ho and P.G. Klemens. Thermophysical properties of matter: thermal conductivity, Vol. 1, IFI/Plenum, New York, 1970.

    Google Scholar 

  34. H.H. Wawra: Metall., 1978, 32, 346-348.

    Google Scholar 

  35. Y.S. Touloukian, R.K. Kirby, R.E. Taylor and P.D. Desai: Thermophysical properties of matter: thermal expansion, Vol. 12, IFI/Plenum, New York, 1978.

    Google Scholar 

  36. L.D. Lucas: Mem. Sci. Rev. Met., 1972, 69 (5), 395-409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Yigit.

Additional information

Manuscript submitted June 29, 2016.

Appendix

Appendix

The time-dependent coefficients in Eqs. [33] through [35] are found as follows:

$$ c_{1} \left( t \right) = \frac{{c_{3} \left( t \right)K^{b} }}{{K^{c} }};\;c_{2} \left( t \right) = - \left[ {s_{1} \left( t \right)\frac{{Q_{0} \left( t \right)}}{{K^{c} \cosh \left( {ms_{0} } \right)}} + c_{1} \left( t \right){ \tanh }(ms_{0} )} \right] $$
(A1)
$$ \begin{aligned} c_{3} \left( t \right) = \frac{{Q_{1} \left( t \right)}}{{mK^{b} }}\left( {\cosh \left( {mu + mh} \right)\cosh^{2} \left( {mu} \right) - \sinh \left( {mu + mh} \right)\sinh \left( {mu} \right)\cosh \left( {mu} \right)} \right) \hfill \\ + \left( {\frac{{Q_{1} \left( t \right)}}{{Q_{0} \left( t \right)}} + \frac{{R^{\prime}_{\text{m}} P_{1} \left( t \right)}}{{R_{\text{m}} }}} \right)\left( {T_{\text{m}} + Q_{0} \left( t \right)\left( { - \frac{u}{{K^{b} }} - \frac{{s_{0} \left( t \right)}}{{K^{c} }} - R - \frac{h}{{K^{d} }}} \right)} \right){ \sinh }(mu) \hfill \\ + \frac{{Q_{1} \left( t \right)}}{{mK^{d} }}\left( { - \cosh \left( {mu + mh} \right)\sinh^{2} \left( {mu} \right) + \sinh \left( {mu + mh} \right)\cosh \left( {mu} \right){ \sinh }(mu)} \right) \hfill \\ \end{aligned} $$
(A2)
$$ \begin{aligned} c_{4} \left( t \right) = \left( {\frac{{Q_{1} \left( t \right)}}{{Q_{0} \left( t \right)}} + \frac{{R^{\prime}_{\text{m}} P_{1} \left( t \right)}}{{R_{\text{m}} }}} \right)\left( {T_{\text{m}} + Q_{0} \left( t \right)\left( { - \frac{u}{{K^{b} }} - \frac{{s_{0} \left( t \right)}}{{K^{c} }} - R - \frac{h}{{K^{d} }}} \right)} \right){ \cosh }(mu) \hfill \\ + \frac{{Q_{1} \left( t \right)}}{{mK^{d} }}\left( { - \cosh \left( {mu + mh} \right)\cosh \left( {mu} \right){ \sinh }(mu) + \sinh \left( {mu + mh} \right)\cosh^{2} \left( {mu} \right)} \right) \hfill \\ \frac{{Q_{1} \left( t \right)}}{{mK^{b} }}\left( {\cosh \left( {mu + mh} \right)\cosh \left( {mu} \right)\sinh \left( {mu} \right) - \sinh \left( {mu + mh} \right)\sinh^{2} \left( {mu} \right)} \right) \hfill \\ \end{aligned} $$
(A3)
$$ c_{5} \left( t \right) = \frac{{Q_{1} \left( t \right)}}{{mK^{d} }}\cosh \left( {mu + mh} \right);\;c_{6} \left( t \right) = \frac{{Q_{1} \left( t \right)}}{{mK^{d} }}{ \sinh }(mu + mh) $$
(A4)

The coefficients of Eq. [36], which denotes the amplitude of the added perturbation on the extracted heat flux at the bottom of the mold, are

$$ d_{1} = L^{c} \rho^{c} \frac{{{\text{d}}s_{1} \left( t \right)}}{{{\text{d}}t}} + ms_{1} \left( t \right)Q_{0} \left( t \right)\tanh \left( {ms_{0} \left( t \right)} \right) - \frac{{R^{\prime}_{\text{m}} \left( {P_{o} } \right)P_{1} \left( t \right)mK^{b} E{ \sinh }(mu)}}{{\cosh \left( {ms_{0} \left( t \right)} \right)R_{\text{m}} }} $$
$$ d_{2} = \frac{{\cosh \left( {mu + mh} \right)\cosh^{2} (mu) - \sinh \left( {mu + mh} \right)\sinh \left( {mu} \right){ \cosh }(mu)}}{{{ \cosh }(ms_{0} \left( t \right))}} + \frac{{E\sinh \left( {mu} \right)mK^{b} }}{{\cosh \left( {ms_{0} \left( t \right)} \right)Q_{0} (t)}} + \frac{{K^{b} }}{{K^{d} }}\left( {\frac{{ - \cosh \left( {mu + mh} \right)\sinh^{2} \left( {mu} \right) + \sinh \left( {mu + mh} \right)\cosh \left( {mu} \right){ \sinh }(mu)}}{{{ \cosh }\left( {ms_{0} \left( t \right)} \right)}}} \right) $$
$$ E = T_{\text{m}} + Q_{o} (t)\left( { - \frac{u}{{K^{b} }} - \frac{{s_{0} \left( t \right)}}{{K^{c} }} - R - \frac{h}{{K^{d} }}} \right) $$

The coefficients of the first coupled equation in Eq. [37] which obtained at the end of the thermal problem are

$$ \begin{aligned} d_{3} = \hfill \\ \left( {L^{c} \rho^{c} (\cosh \left( {mh} \right)\cosh \left( {ms_{0} \left( t \right)} \right)\sinh \left( {mu} \right)K^{c} K^{d} } \right) \hfill \\ + \sinh \left( {mu} \right)\sinh \left( {ms_{0} \left( t \right)} \right)K^{{b^{2} }} \left( {\sinh \left( {mh} \right) + mK^{d} R_{\text{m}} } \right) \hfill \\ + K^{b} (\cosh \left( {mh} \right)\cosh \left( {mu} \right)\sinh \left( {ms_{0} \left( t \right)} \right)K^{d} \hfill \\ + K^{b} (\cosh \left( {mh} \right)\cosh \left( {mu} \right)\sinh \left( {ms_{0} \left( t \right)} \right)K^{d} \hfill \\ + \left. {\left. {\cosh \left( {ms_{0} \left( t \right)} \right)K^{c} \left( {\cosh \left( {mu} \right)\left( {\sinh \left( {mh} \right) + mK^{d} R_{\text{m}} } \right) + mK^{d} R} \right)} \right)} \right) \hfill \\ {{\left( {uK^{c} K^{d} + K^{b} \left( {K^{c} \left( {h + K^{d} \left( {R_{\text{m}} + R} \right) + K^{d} s_{0} \left( t \right)} \right)} \right)} \right)} \mathord{\left/ {\vphantom {{\left( {uK^{c} K^{d} + K^{b} \left( {K^{c} \left( {h + K^{d} \left( {R_{\text{m}} + R} \right) + K^{d} s_{0} \left( t \right)} \right)} \right)} \right)} {\left. {\left. {\left( {mT_{\text{m}} K^{{b^{2} }} K^{{c^{2} }} K^{d} (\cosh \left( {mh} \right)\cosh \left( {mu} \right)K^{d} + \sinh \left( {mu} \right)K^{b} (\sinh \left( {mh} \right) + mK^{d} R_{\text{m}} } \right)} \right)R} \right)}}} \right. \kern-0pt} {\left. {\left. {\left( {mT_{\text{m}} K^{{b^{2} }} K^{{c^{2} }} K^{d} (\cosh \left( {mh} \right)\cosh \left( {mu} \right)K^{d} + \sinh \left( {mu} \right)K^{b} (\sinh \left( {mh} \right) + mK^{d} R_{\text{m}} } \right)} \right)R} \right)}} \hfill \\ \end{aligned} $$
(A5)
$$ \begin{aligned} d_{4} = \hfill \\ \left( {mT_{\text{m}} \cosh \left( {ms_{0} \left( t \right)} \right)\sinh \left( {mh} \right)\sinh \left( {mu} \right)K^{{b^{3} }} K^{c} K^{d} + mT_{\text{m}} \cosh \left( {mu} \right)\sinh \left( {mh} \right)\sinh \left( {ms_{0} \left( t \right)} \right)K^{{b^{2} }} K^{{c^{2} }} K^{d} + } \right. \hfill \\ mT_{\text{m}} \cosh \left( {mh} \right)\cosh \left( {mu} \right)\cosh \left( {ms_{0} \left( t \right)} \right)K^{{b^{2} }} K^{c} K^{{d^{2} }} + mT_{\text{m}} \cosh \left( {mh} \right)\sinh \left( {mu} \right)\sinh \left( {ms_{0} \left( t \right)} \right)K^{b} K^{{c^{2} }} K^{{d^{2} }} + \hfill \\ m^{2} T_{\text{m}} \cosh \left( {ms_{0} \left( t \right)} \right)\sinh \left( {mu} \right)K^{{b^{3} }} K^{c} K^{{d^{2} }} R_{m} + m^{2} T_{\text{m}} \cosh \left( {mu} \right)\sinh \left( {ms_{0} \left( t \right)} \right)K^{{b^{2} }} K^{{c^{2} }} K^{{d^{2} }} R_{\text{m}} + \hfill \\ \left. {m^{2} T_{\text{m}} \sinh \left( {ms_{0} \left( t \right)} \right)K^{{b^{2} }} K^{{c^{2} }} K^{{d^{2} }} R} \right)/ \hfill \\ \left( {mT_{\text{m}} K^{{b^{2} }} K^{{c^{2} }} K^{d} \left( {\cosh \left( {mh} \right)\cosh \left( {mu} \right)K^{d} + \sinh \left( {mu} \right)K^{b} \left( {\sinh \left( {mh} \right) + mK^{d} R_{\text{m}} } \right)} \right)R} \right) \hfill \\ \end{aligned} $$
(A6)
$$ \begin{aligned} d_{5} = \hfill \\ \left( {mT_{\text{m}} \cosh \left( {mh} \right)K^{{b^{2} }} K^{{c^{2} }} K^{{d^{2} }} R^{\prime}_{\text{m}} - m^{2} T_{\text{m}} \sinh \left( {mu} \right)K^{{b^{3} }} K^{{c^{2} }} K^{{d^{2} }} R^{\prime}_{\text{m}} R + } \right. \hfill \\ mT_{\text{m}} \sinh \left( {mh} \right)\sinh \left( {mu} \right)K^{{b^{3} }} K^{{c^{2} }} K^{d} R^{\prime} + mT_{\text{m}} \cosh \left( {mh} \right)\cosh \left( {mu} \right)K^{{b^{2} }} K^{{c^{2} }} K^{{d^{2} }} R^{\prime} + \hfill \\ {{\left. {m^{2} T_{\text{m}} \sinh \left( {mu} \right)K^{{b^{3} }} K^{{c^{2} }} K^{{d^{2} }} R_{\text{m}} R^{\prime}} \right)} \mathord{\left/ {\vphantom {{\left. {m^{2} T_{\text{m}} \sinh \left( {mu} \right)K^{{b^{3} }} K^{{c^{2} }} K^{{d^{2} }} R_{\text{m}} R^{\prime}} \right)} {\left( {mT_{\text{m}} K^{{b^{2} }} K^{{c^{2} }} K^{d} \left( {\cosh \left( {mh} \right)\cosh \left( {mu} \right)K^{d} + \sinh \left( {mu} \right)K^{b} \left( {\sinh \left( {mh} \right) + mK^{d} R_{\text{m}} } \right)} \right)R} \right)}}} \right. \kern-0pt} {\left( {mT_{\text{m}} K^{{b^{2} }} K^{{c^{2} }} K^{d} \left( {\cosh \left( {mh} \right)\cosh \left( {mu} \right)K^{d} + \sinh \left( {mu} \right)K^{b} \left( {\sinh \left( {mh} \right) + mK^{d} R_{\text{m}} } \right)} \right)R} \right)}} \hfill \\ \end{aligned} $$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, M.H., Yigit, F. Thermoelastic Stability Analysis of Solidification of Pure Metals on a Coated Planar Mold of Finite Thickness. Metall Mater Trans B 48, 966–982 (2017). https://doi.org/10.1007/s11663-016-0876-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0876-6

Keywords

Navigation