Skip to main content
Log in

Numerical Investigation of the Inner Profiles of Ironmaking Blast Furnaces: Effect of Throat-to-Belly Diameter Ratio

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The inner profile of iron making blast furnace (BF) is of significant importance to reactor performance. However, its determination lacks any sound theoretical and empirical base. This paper presents a numerical study of the multiphase flow and thermochemical behaviors inside BFs with different inner profiles by a multi-fluid process model. The validity of the model is first confirmed by various applications. It is then used to study the effect of throat-to-belly diameter ratio (R D) with respect to productivity, burden distribution pattern, and softening-melting temperature of ferrous materials. The results show that when R D increases, the fuel rate increases at relatively low productivities; however, it initially decreases to a minimum and then increases at relatively high productivities. This performance against R D to some degree varies with either burden distribution pattern or softening-melting temperature of ferrous materials. Optimum R D can be identified with relatively small coke rate and minimum fluctuations of global performance and in-furnace states. The analysis of the in-furnace states reveals that the flow and thermochemical behaviors above the cohesive zone are drastically deteriorated with increasing productivity for BFs with relatively small R D , leading to different variation trends of fuel rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. 1. I. F. Kurunov, Metallurgist 2012, vol. 56, pp. 241-246.

    Article  Google Scholar 

  2. 2. A.K. Biswas: Principles of blast furnace ironmaking: theory and practice, Cootha Publishing House, Brisbane, Australia, 1981.

    Google Scholar 

  3. 3. M. Ichida, K. Anan, M. Takao, K. Kakiuchi, Y. Morizane, I. Yamada and T. Nakayama, Nippon Steel Technical Report 2006, vol. 94, pp. 80-86.

    Google Scholar 

  4. 4. M. Ichida, K. Tamura, Y. Okuno, K. Yamaguchi, M. Nakayama and M. Nakamura, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 1992, vol. 78, pp. 58-65.

    Google Scholar 

  5. 5. M. Shimizu, A. Yamaguchi, S. Inaba and K. Narita, Tetsu-to-Hagané 1982, vol. 68, pp. 936-945.

    Google Scholar 

  6. K. Narita, M. Shimizu and S. Inaba, Report of 54th Committe of Gakushin (Japan Socieety for Promotion of Science), Rport No. 1537, 1980.

  7. 7. X. F. Dong, A. B. Yu, J. I. Yagi and P. Zulli, ISIJ International 2007, vol. 47, pp. 1553-1570.

    Article  Google Scholar 

  8. 8. H. P Zhu, Z. Y. Zhou, R. Y. Yang and A. B. Yu, Chemical Engineering Science 2008, vol. 63, pp. 5728-5770.

    Article  Google Scholar 

  9. 9. H. P. Zhu, Z. Y. Zhou, R. Y. Yang and A. B. Yu, Chemical Engineering Science 2007, vol. 62, pp. 3378-3396.

    Article  Google Scholar 

  10. 10. S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikstrom, L. S. Okvist and J. O. Wikstrom, ISIJ International 2013, vol. 53, pp. 2065-2071.

    Article  Google Scholar 

  11. 11. T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi and H. Nogami, ISIJ International 2014, vol. 54, pp. 1457-1471.

    Article  Google Scholar 

  12. 12. S. Ueda, S. Natsui, H. Nogami, J. Yagi and T. Ariyama, ISIJ International 2010, vol. 50, pp. 914-923.

    Article  Google Scholar 

  13. 13. J. Yagi, ISIJ International 1991, vol. 31, pp. 387-394.

    Article  Google Scholar 

  14. 14. Z. Y. Zhou, S. B. Kuang, K. W. Chu and A. B. Yu, Journal of Fluid Mechanics 2010, vol. 661, pp. 482-510.

    Article  Google Scholar 

  15. 15. J. L. Zhang, Y. X. Chen, Z. Y. Fan, Z. W. Hu, T. J. Yang and T. Ariyama, Journal of Iron and Steel Research International 2011, vol. 18, pp. 1-6.

    Article  Google Scholar 

  16. 16. T. Nouchi, Sato. M and K. Taakeda, The JFE Steel Corporation Steel Research Laboratory, Process analysis for blast furnaces by the discrete element method, JFE Technical Report, vol. 33, pp. 28-33, 2009.

    Google Scholar 

  17. 17. Z. Y. Fan, S. Igarashi, S. Natsui, S. Ueda, T. Yang, R. Inoue and T AIryama, ISIJ International 2010, vol. 50, pp. 1406-1412.

    Article  Google Scholar 

  18. 18. T. Umekage, M. Kadowaki and S. Yuu, ISIJ International 2007, vol. 47, pp. 659-668.

    Article  Google Scholar 

  19. 19. W. J. Yang, Z. Y. Zhou and A. B. Yu, Chemical Engineering Journal 2015, vol. 278, pp. 339-352.

    Article  Google Scholar 

  20. 20. W. J. Yang, Z. Y. Zhou, D. Pinson and A. B. Yu, Metallurgical and Materials Transactions B 2014, vol. 46, pp. 977-992.

    Article  Google Scholar 

  21. 21. S. Natsui, R. Shibasaki, T. Kon, S. Ueda, R. Inoue and T. Ariyama, ISIJ International 2013, vol. 53, pp. 1770-1778.

    Article  Google Scholar 

  22. 22. Z. Y. Zhou, H. P. Zhu, B. Wright, A. B. Yu and P. Zulli, Powder Technology 2011, vol. 208, pp. 72-85.

    Article  Google Scholar 

  23. 23. P. R. Austin, H. Nogami and J. Yagi, ISIJ International 1997, vol. 37, pp. 748-755.

    Article  Google Scholar 

  24. 24. S. J. Chew, P. Zulli and A. B. Yu, ISIJ International 2001, vol. 41, pp. 1112-1121.

    Article  Google Scholar 

  25. 25. S. J. Chew, P. Zulli and A. B. Yu, ISIJ International 2001, vol. 41, pp. 1122-1130.

    Article  Google Scholar 

  26. 26. G. X. Wang, S. J. Chew, A. B. Yu and P. Zulli, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 1997, vol. 28, pp. 333-343.

    Article  Google Scholar 

  27. 27. K. Takatani, T. Inada and Y. Ujisawa, ISIJ International 1999, vol. 39, pp. 15-22.

    Article  Google Scholar 

  28. 28. S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and U. Tuzun, ISIJ International 1998, vol. 38, pp. 1311-1319.

    Article  Google Scholar 

  29. 29. D. Fu, Y. Chen, Y. F. Zhao, J. D’Alessio, K. J. Ferron and C. Q. Zhou, Applied Thermal Engineering 2014, vol. 66, pp. 298-308.

    Article  Google Scholar 

  30. 30. K. Yang, S. Choi, J. Chung and J. Yagi, ISIJ International 2010, vol. 50, pp. 972-980.

    Article  Google Scholar 

  31. 31. X. F. Dong, A. B. Yu, S. J. Chew and P. Zulli, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 2010, vol. 41, pp. 330-349.

    Article  Google Scholar 

  32. 32. J. A. de Castro, A. J. da Silva, Y. Sasaki and J. Yagi, ISIJ International 2011, vol. 51, pp. 748-758.

    Article  Google Scholar 

  33. 33. P. R. Austin, H. Nogami and J. Yagi, ISIJ International 1997, vol. 37, pp. 458-467.

    Article  Google Scholar 

  34. 34. T. Inada, K. Takatani, K. Takata and T. Yamamoto, ISIJ International 2003, vol. 43, pp. 1143-1150.

    Article  Google Scholar 

  35. 35. T. Inada, K. Takata, K. Takatani and T. Yamamoto, ISIJ International 2003, vol. 43, pp. 1003-1010.

    Article  Google Scholar 

  36. 36. S. B. Kuang, Z. Y. Li, D. L. Yan, Y. H. Qi and A. B. Yu, Minerals Engineering 2014, vol. 63, pp. 45-56.

    Article  Google Scholar 

  37. H. Th. Brandi, G. Heynert and H. BEER, Stahl u. Eisen 1964, vol. 84, pp. 1169-74.

    Google Scholar 

  38. 38. H. Beer and G. Heynert, Stahl u. Eisen 1964, vol. 84, pp. 1353-65.

    Google Scholar 

  39. 39. M. S. Chu, H. Nogami and J. Yagi, ISIJ International 2004, vol. 44, pp. 510-517.

    Article  Google Scholar 

  40. 40. M. Chu, H. Nogami and J. Yagi, ISIJ International 2004, vol. 44, pp. 801-808.

    Article  Google Scholar 

  41. 41. J. A. de Castro, H. Nogami and J. Yagi, ISIJ International 2001, vol. 41, pp. 18-24.

    Article  Google Scholar 

  42. S.B. Kuang, Z. Y. Li and A. B. Yu, Model study of the optimization and investigation of burden distribution on Baosteel No 1 BF, Baosteel internal report, 2015.

  43. S.B. Kuang, Z. Y. Li, S.D. Liu, J.Q. Gan and A. B. Yu, Modeling and optimization of 750-m3 blast furnace in Baosteel, Baosteel internal report, 2015.

  44. 44. M. Geerdes, H. Toxopeus and C. Van der Vliet: Modern blast furnace ironmaking: an introduction, IOS Press BV, Amsterdam, the Netherlands, 2009.

    Google Scholar 

  45. 45. H. Jin, S. Choi, J. Yagi and J. Chung, ISIJ International 2010, vol. 50, pp. 1023-1031.

    Article  Google Scholar 

  46. 46. I. Muchi, Transactions ISIJ 1967, vol. 7, pp. 223-37.

    Google Scholar 

  47. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London, 1987.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australian Research Council (ARC) and Central Iron & Steel Research Institute (CISRI) for the financial support of this work, and the National Computational Infrastructure (NCI) and Intersect Australia for the use of their high-performance computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibo Kuang.

Additional information

Manuscript submitted June 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Kuang, S., Yan, D. et al. Numerical Investigation of the Inner Profiles of Ironmaking Blast Furnaces: Effect of Throat-to-Belly Diameter Ratio. Metall Mater Trans B 48, 602–618 (2017). https://doi.org/10.1007/s11663-016-0831-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0831-6

Keywords

Navigation