Skip to main content
Log in

Evolution of the Spectral Emissivity and Phase Transformations of the Al-Si Coating on Usibor® 1500P Steel During Austenitization

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Usibor® 1500P coupons are austenitized in a Gleeble 3500 thermomechanical simulator using a two-step heating procedure in an argon atmosphere. Variations in spectral emissivity are measured in-situ using a near infrared spectrometer and ex situ with a Fourier transform infrared reflectometer. Microstructural evolution and surface roughness are investigated using optical microscopy, FE-scanning electron microscopy, and a surface profilometer. A series of phase transformations of Al-Fe-Si intermetallic phases at the coating/steel substrate interface cause the surface phase and surface roughness to change, which in turn influences the spectral emissivity. At the beginning of the first heating step, the coupons have very low spectral emissivity, due to the molten Al-Si coating. Spectral emissivity increases significantly with increasing soak time from 5 to 12 minutes, associated with the surface phase transformation of the coating into Al7Fe2Si intermetallic phase and an increase in surface roughness. Through the second step heating at 1173 K (900 °C), the spectral emissivity shows a gradually decreasing trend with increasing soak time, caused by the surface phase transformation from Al5Fe2 into AlFe intermetallic phase with a decrease in surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. 1.H. Karbasian and A.E. Tekkaya: J. Maters. Proc. Technol., 2010, vol. 210, pp. 2103-18.

    Article  Google Scholar 

  2. 2.C. Allély, L. Dosdat, O. Clauzeau, K. Ogle, and P. Volovitch: Surf. Coat. Technol., 2014, vol. 238, pp. 188-96.

    Article  Google Scholar 

  3. J. Tonne, J. Clobes, M. Alsmann, A. Ademaj, M. Mischka, W. Morgenroth, H. Becker and O. Stursberg: in The 4th International Conference on Hot Sheet Metal Forming of High Performance Steel, pp. 177–84, Luleå, Sweden, 2013.

  4. N.L. Chester, K.J. Daun and M.A. Wells: in ASME International Mechanical Engineering Congress and Exposition, Montreal, Canada, 2014.

  5. K.S. Jhajj, K.J. Daun, M.A. Wells and S.R. Slezak: in The 5th International Conference on Hot Sheet Metal Forming of High-Performance Steel, Toronto, Canada, 2015.

  6. 6. J. Pujana, L.D. Campo, R.B. Pérez-Sáez, M. J. Tello, I. Gallego and P.J. Arrazola: Meas. Sci. Technol. 2007, vol. 18, pp. 3409-3416.

    Article  Google Scholar 

  7. 7. C.D. Wen: Intl. J. Heat Mass Transfer, 2010, vol. 53, pp. 2035-2043.

    Article  Google Scholar 

  8. 8. C.D. Wen and I. Mudawar: Intl. J. Heat Mass Transfer, 2006, vol. 49, pp. 4279-4289.

    Article  Google Scholar 

  9. 9. Y.M. Wang, H. Tian, X.E. Shen, L. Wen, J.H. Ouyang, Y. Zhou, D.C. Jia and L.X. Guo: Ceramics Int., 2013, vol. 39, pp. 2869-2875.

    Article  Google Scholar 

  10. 10. R. Grigorieva, P. Drillet, J.M. Mataigne and A. Redjaïmia: Solid State Pheno., 2011, vol. 172, pp. 784-790.

    Article  Google Scholar 

  11. 11. T. Maitra and S.P. Gupta: Mater. Charact., 2003, vol. 49, pp. 293-311.

    Article  Google Scholar 

  12. 12. W.J. Cheng and C.J. Wang: Surf. Coat. Technol., 2011, vol. 205, pp. 4726-4731.

    Article  Google Scholar 

  13. 13. M. Windmann, A. Röttger and W. Theisen: Surf. Coat. Technol., 2013, vol. 226, pp. 130-139.

    Article  Google Scholar 

  14. 14. J. Song, X. Wang, T. DenOuden and Q. Han: Mater. Trans. A, 2016, vol. 47A, pp. 2609-2615.

    Article  Google Scholar 

  15. 15. J.L. Murray and A.J. McAlister: Bulletin of Alloy Phase Diagrams, 1984, vol. 5, pp. 74-84.

    Article  Google Scholar 

  16. 16. C.D. Wen and I. Mudawar: Intl. J. Heat Mass Transfer, 2005, vol. 48, pp. 1316-1329.

    Article  Google Scholar 

  17. 17. H. Mehrer: Diffusion in Solid Metals and Alloys, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Berlin: Springer-Verlag, 1990.

    Google Scholar 

  18. 18. A.K. Bewoor and V.A. Kulkarni: Metrology & measurement, New Delhi: Tata McGraw-Hill, 2009.

    Google Scholar 

  19. 19. J.A. Ogilvy: Rep. Prog. Phys., 1987, vol. 50, pp. 1553-1608.

    Article  Google Scholar 

  20. 20. H. Davies: Proc. IEEE, 1954, vol. 101, pp. 209-214.

    Google Scholar 

  21. 21. H.J. Yu, G.Y. Xu and X.M. Shen: Appl Surf Sci., 2009, vol. 255, pp. 6077-6081.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council Canada-Automotive Partnership Canada (NSERC-APC). The authors also gratefully thank Professor M.R. Collins of University of Waterloo for providing the Fourier transform infrared reflectometer, and Mr. M.A. Whitney, Mr. M. Griffett and Dr. Y. Ding of University of Waterloo for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cangji Shi.

Additional information

Manuscript submitted September 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Daun, K.J. & Wells, M.A. Evolution of the Spectral Emissivity and Phase Transformations of the Al-Si Coating on Usibor® 1500P Steel During Austenitization. Metall Mater Trans B 47, 3301–3309 (2016). https://doi.org/10.1007/s11663-016-0791-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0791-x

Keywords

Navigation