Skip to main content
Log in

Comparison of the Oxidation Behaviors of High FeO Chromite and Magnetite Concentrates Relevant to the Induration of Ferrous Pellets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Oxidation process plays an important role in producing sufficiently strong ferrous pellets for blast furnace, and the oxidation behavior of pellet feed greatly affects the quality of pellets. As a supplementary research to earlier published work, the present study fixes its particular attention on the fundamental oxidation behavior of a high FeO South African chromite concentrate in comparison to that of typical magnetite concentrate using differential scanning calorimetry, X-ray diffraction analysis, and thermogravimetry at various temperatures ranging from 473 K to 1273 K (200 °C to 1000 °C). The reaction mechanism and phase transformation during the oxidation process of chromite spinel is further explained by thermodynamics calculation performed by FactSage software. Besides, routine laboratory preheating–roasting test of single ore pellets is also conducted to reveal the relevance of oxidizability to the consolidation of pellets. The results show that the chromite spinel possesses much poorer oxidizability than magnetite, usually accompanying complex phase transformations via a preferential nucleation of Fe-rich sesquioxide from the chromite spinel matrix at low temperatures and thereafter the formation of Cr-rich sesquioxide on the substrate of Fe-rich phase at high temperatures. The oxidation of chromite spinel is inferior to that of magnetite from the viewpoint of thermodynamics and dynamic kinetics. Good inherent oxidizability of raw materials is found to have a positive effect on the induration process of pellet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.A. Cramer, J. Basson, and L.R. Nelson: J. S. Afr. I. Min. Metall., 2004, vol. 104, pp. 517–27.

    Google Scholar 

  2. J. Daavittila, M. Honkaniemi, and P. Jokinen: J. S. Afr. I. Min. Metall., 2004, vol. 104, pp. 541–9.

    Google Scholar 

  3. D.Q. Zhu, C.C. Yang, J. Pan, and Y. Zhong: in 6th International Symposium on High-Temperature Metallurgical Processing, T. Jiang, J.Y. Hwang, G.R.F.A.F.O. Yücel, X. Mao, H.Y. Sohn, N. Ma, P.J. Mackey, and T.P. Battle, eds., Wiley, Hoboken, NJ, 2015, p. 139.

  4. D.Q. Zhu, C.C. Yang, J. Pan, Q. Zhang, B.J. Shi and F. Zhang: Metall. Mater. Trans. B, 2016, 47B, p. 1010-23.

    Article  Google Scholar 

  5. D. Papanastassiou and G. Bitsianes: Metall. Mater. Trans. B, 1973, vol. 4, pp. 487-96.

    Article  Google Scholar 

  6. J.R. Wynnyckyj and T.Z. Fahidy: Metall. Trans., 1974, vol. 5, pp. 991-9.

    Article  Google Scholar 

  7. Y.M. Zhang: Theory and Technology of Iron Ore Pelletizing, 1st ed., Metallurgical Industrial Press, Beijing, 1997, pp. 95–130 (in Chinese)

  8. B. Gillot, R.M. Benloucif, F. Jemmali: J. Mater. Sci., 1984, vol. 19, pp. 3806-13.

    Article  Google Scholar 

  9. B. Gillot, F. Jemmali: J. Mater. Sci., 1986, vol. 21, pp. 4436-42.

    Article  Google Scholar 

  10. J.P. Sanders, P.K. Gallagher: Thermochim. Acta, 2003, vol. 406, pp. 241-3.

    Article  Google Scholar 

  11. E.R. Monazam, R.W. Breault, and R. Siriwardane: Lnd. Eng. Chem. Res., 2014, vol. 53, pp. 13320-8.

    Google Scholar 

  12. B. Gillot, J.F. Ferriot, G. Dupré, A. Roussat: Mater. Res. Bull., 1976, vol. 11, pp. 843-9.

    Article  Google Scholar 

  13. B. Gillot, F. Bouton, F. Chassagneux: Mater. Res. Bull., 1980, vol. 15, pp. 1-7.

    Article  Google Scholar 

  14. S. Sarkar, J. Ghose: J. Therm. Anal., 1990, vol.36, pp. 2593-9.

    Article  Google Scholar 

  15. J.M.G. Amores, V.S. Escribano, G. Busca: Mater. Chem. Phys., 1999, vol. 60, pp. 168-76.

    Article  Google Scholar 

  16. V.D. Tathavadkar, M.P. Antony, A. Jha: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 76-84.

    Google Scholar 

  17. S.S. Ramos, A.D. Carbó, J.G. Adelantado, J.P. Vicente, F.M. Algarra: Thermochim. Acta, 2008, vol. 476, pp. 11-9.

    Article  Google Scholar 

  18. X.L. Liang, Y.H. Zhong, S.Y. Zhu, H.P. He, P. Yuan, J. Zhu, J. Zheng: Solid State Sci., 2013, vol. 15, pp. 115-22.

    Article  Google Scholar 

  19. Y.W. Li: Ph.D Dissertation, Shanghai University, 2010, p. 174–77 (in Chinese)

  20. D.Q. Zhu, Y.H. Luo, J. Pan, and W.T. Zhou: Metal Mine, 2011, pp. 89–93 (in Chinese)

  21. G.Z. Qiu, D.Q. Zhu, J. Pan, C.A. Wang, Y.F. Guo, T. Jiang, C.F. Hu, J. Clout, F.H. Shu: ISIJ Int., 2004, vol. 44, pp. 69-73.

    Article  Google Scholar 

  22. J. Szekely, J.W. Evans, H.Y. Sohn: Gas-solid Reactions, Academic Press, New York, 1976, vol. 3, pp. 73-104.

    Google Scholar 

  23. J.Y. Fu, Y.T. Li, C.W. Jiang, L.Q. Wang: J. Cent. South Univ. (Science and Technology), 2004, vol. 35, pp. 950-4. (in Chinese)

    Google Scholar 

  24. R.Q. Liang, S. Yang, F.S. Yan, J.C. He: J. Iron Steel Res. Int., 2013, vol. 20, pp. 16-20.

    Article  Google Scholar 

  25. H.Q. Tang, X.M. Guo, S.B. Zhang, and Z.C. Guo: J. Iron Steel Res., 2000, vol. 12, pp. 1 (in Chinese)

    Google Scholar 

  26. J.H. Liu, J.Y. Zhang, and T.P. Zhou: J. Iron Steel Res., 2000, vol. 34, pp. 5 (in Chinese)

    Google Scholar 

  27. E.R. Schemidt and F.H.S. Vermaas: Am. Mineral., 1955, vol. 40, pp. 422-31.

    Google Scholar 

  28. A.C.D. Chaklader and G.R. Blair: J. Therm. Anal., 1970, vol. 2, pp. 165-79.

    Article  Google Scholar 

  29. J.P. Sanders, P.K. Gallagher: J. Therm. Anal. Calorim., 2003, vol. 72, pp. 777-789.

    Article  Google Scholar 

  30. R.G. Richards and J. White: Trans. Br. Ceram. Soc., 1954, vol. 53, pp. 233-70.

    Google Scholar 

  31. H. Schmalzried: Chemical Kinetics of Solids, VCH, Cambridge, 1995, pp. 19-42.

    Book  Google Scholar 

  32. K. Huang: Solid State Physics, Peking University Press, Beijing, 2013, pp. 60–80 (in Chinese)

  33. C. Kittel: Introduction to Solid State Physics, John Wiley & Sons, Inc., Hoboken, NJ, 2005, pp. 584-618.

    Google Scholar 

  34. P.K. Gallagher, E.M. Gyorgy, and H.E. Bair: J. Chem. Phys. 1979, vol. 71, pp. 830-5.

    Article  Google Scholar 

  35. M.D. Osborne, M.E. Fleet, G.M. Bancroft: Contrib. Mineral Petrol., 1981, vol. 77, pp. 251-5.

    Article  Google Scholar 

  36. R. Sun: J. Chem. Phys., 1958, vol. 28, pp. 290-3.

    Article  Google Scholar 

  37. J.S. Armijo: Oxid. Met., 1969, vol. 1, pp. 171-98.

    Article  Google Scholar 

  38. J. Vaari: Solid State Ionics, 2015, vol. 270, pp. 10-7.

    Article  Google Scholar 

  39. A.A. Yaremchenko, A.V. Kovalevsky, E.N. Naumovich, V.V. Kharton, J.R. Frade: Solid State Ionics, 2011, vol. 192, pp. 252-8.

    Article  Google Scholar 

  40. J. Töpfer, S. Aggarwal, R. Dieckmann: Solid State Ionics, 1995, vol. 81, pp. 251-66.

    Article  Google Scholar 

  41. K.D. Becker and V.V. Wurmb: Hyperfine Interact., 1990, vol. 56, pp. 1431-6.

    Article  Google Scholar 

  42. Z.Q. Song: Master thesis, Central South University of Technology, 2000, pp. 27–48 (in Chinese)

  43. J.R. Wynnyckyj and W.A. Mccurdy: Metall. Trans., 1974, vol. 5, pp. 2207-15.

    Article  Google Scholar 

  44. S.P.E. Forsmo, S.E. Forsmo, P.O. Samskog, B.M.T. Björkman: Powder Technol., 2008, vol. 183, pp. 247-59.

    Article  Google Scholar 

  45. V. Strezov, T.J. Evans, V. Zymla, L. Strezov: Int. J. Miner. Process., 2011, vol. 100, pp. 27-32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial supports from the National Science Foundation of China (No. 51474161) and Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources. The authors also wish to express their gratitude to the School of Materials Science and Engineering in Central South University, which provides the facilities to do the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congcong Yang.

Additional information

Manuscript submitted December 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Yang, C., Pan, J. et al. Comparison of the Oxidation Behaviors of High FeO Chromite and Magnetite Concentrates Relevant to the Induration of Ferrous Pellets. Metall Mater Trans B 47, 2919–2930 (2016). https://doi.org/10.1007/s11663-016-0770-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0770-2

Keywords

Navigation