Skip to main content
Log in

Amorphous Phase Formation Analysis of Rapidly Solidified CoCr Droplets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper investigates amorphous phase formation and rapid solidification characteristics of a CoCr alloy. High cooling rate and high undercooling-induced rapid solidification of the alloy was achieved by impulse atomization in helium atmosphere. Two atomization experiments were carried out to generate powders of a wide size range from liquid CoCr at two different temperatures. Amorphous fraction and kinetic crystallization properties of impulse atomized powders were systematically quantified by means of differential scanning calorimetry. In addition, different but complementary characterization tools were used to analyze the powders microstructures. The fraction of amorphous phase within the investigated powders is found to be promoted by high cooling rate or smaller powder size. The critical cooling rate for amorphous phase formation, which is influenced by the oxygen content in the melt, is found to be ~3 × 104 K s−1 and corresponds to a 160-µm-diameter powder atomized in helium. Hardness of the powders is found to follow a trend that is described by the Hall–Petch relation when a relatively high fraction of crystalline structures is present and decreases with the fraction of amorphous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Klement W, Willens RH, Duwez P. Nature. (1960) 187: 869–870.

    Article  Google Scholar 

  2. Chen, H.S., D.Turnbull. Appl. Phys. Lett. 1967, 10 (10), 284.

    Article  Google Scholar 

  3. H.-W. Kui, A.L. Greer, and D. T. Appl. Phys. Lett. 1993, 63, 2342.

    Article  Google Scholar 

  4. .A. Inoue, N Nishiyama, H.M Kiruma. Mater. Trans. JIM 1997, 38, 179-83.

    Article  Google Scholar 

  5. (5) Q. S. Zhang,, D. Y. Guo, A. M. Wang, H. F. Zhang, B. Z. D. and Z. Q. H. Intermetallics 2002, 10, 1197–1201.

    Article  Google Scholar 

  6. (6) Y. Zhang, D. Q. Zhao, R. J. W. and W. H. W. Acta Mater. 2003, 51, 1971–1979.

    Article  Google Scholar 

  7. (7) Suryanarayana, C.; Inoue, A. Int. Mater. Rev. 2013, 58 (3), 131–166.

    Article  Google Scholar 

  8. (8) Inoue, A.; Shen, B. L.; Chang, C. T. Intermetallics 2006, 14 (8-9), 936–944.

    Article  Google Scholar 

  9. (9) Henein, H. Mater. Sci. Eng. A 2002, 326 (1), 92–100.

    Article  Google Scholar 

  10. (10) Mullis, A. M.; Bigg, T. D.; Adkins, N. J. J. Alloys Compd. 2015, 648, 139–148.

    Article  Google Scholar 

  11. Prasad, A.; Mosbah, S.; Henein, H.; Gandin, C.-A. ISIJ International. 2009, 49: 992–999.

    Article  Google Scholar 

  12. (12) Wiskel, J. B.; Henein, H.; Maire, E. Can. Metall. Q. 2002, 41 (1), 97–110.

    Article  Google Scholar 

  13. 13.Wiskel, J. B.; Navel, K.; Henein, H.; Maire, E. Canadian Metallurgical Quarterly; 2002; 41: 193–204.

    Article  Google Scholar 

  14. (14) Gandin, C.-A.; Mosbah, S.; Volkmann, T.; Herlach, D. M. Acta Mater. 2008, 56 (13), 3023–3035.

    Article  Google Scholar 

  15. (15) Ciftci, N. Ellendt, N.Von Bargen, R.Henein, H. Mädler, L.Uhlenwinkel, V. J. Non. Cryst. Solids 2014, 394-395, 36–42.

    Article  Google Scholar 

  16. (16) Minić, D., Gavrilović, A., Angerer, P., Minić, D., & Maričić, A. J. Alloys Compd. 2009, 482, 502–507.

    Article  Google Scholar 

  17. 17.Fraczyk, A. Tech. Sci. 2011, 1:1-208.

    Google Scholar 

  18. (18) Lee, K. S., & Lee, Y. S. 2012 2012, 5, 2472–2478.

    Google Scholar 

  19. (19) Wang, H., Gao, Y., Ye, Y., Min, G., Chen, Y., & Teng, X. J. Alloys Compd. 2003, 353, 200–206.

    Article  Google Scholar 

  20. 20.Hansen, N. Scripta Mater. 2004, 51, 801–806.

    Article  Google Scholar 

  21. (21) Meyers, M. A.; Mishra, A.; Benson, D. J. Prog. Mater. Sci. 2006, 51 (4), 427–556.

    Article  Google Scholar 

  22. (22) Takeuchi, S. Scr. Mater. 2001, 44 (8-9), 1483–1487.

    Article  Google Scholar 

  23. (23) Saada, G. Mater. Sci. Eng. A 2005, 400-401 (1-2 SUPPL.), 146–149.

    Article  Google Scholar 

  24. (24) Scattergood, R. O.; Koch, C. C. Scr. Metall. Mater. 1992, 27 (9), 1195–1200.

    Article  Google Scholar 

  25. (25) Gholipour, A.; Shamanian, M.; Ashrafizadeh, F. J. Alloys Compd. 2011, 509 (14), 4905–4909.

    Article  Google Scholar 

  26. (27) Bogno, A-A.; Dahlborg U.; Calvo- Dahlborg M.; Riveros C.; Ciftci, N.; Henein, H., Sediako D.;. J. Non-Cryst. Solids 432 (2016), 466-470.

    Article  Google Scholar 

  27. http://www.stellite.co.uk/ProductsServices/SprayFusePowderWeldPowder/tabid/67/Default.aspx. Accessed 28 Oct 2015.

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC), KENNAMETAL Inc., and RIEM-NSERC Grant for the collaboration with CanmetMATERIALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoul-Aziz Bogno.

Additional information

©Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016.

Manuscript submitted October 31, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogno, AA., Riveros, C., Henein, H. et al. Amorphous Phase Formation Analysis of Rapidly Solidified CoCr Droplets. Metall Mater Trans B 47, 3257–3265 (2016). https://doi.org/10.1007/s11663-016-0635-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0635-8

Keywords

Navigation