Skip to main content
Log in

Multiphase Modeling of Bottom-Stirred Ladle for Prediction of Slag–Steel Interface and Estimation of Desulfurization Behavior

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Ladle furnace is a key unit in which various phenomena such as deoxidation, desulfurization, inclusion removal, and homogenization of alloy composition and temperature take place. Therefore, the processes present in the ladle play an important role in determining the quality of steel. Prediction of flow behavior of the phases present in the ladle furnace is needed to understand the phenomena that take place there and accordingly control the process parameters. In this study, first a mathematical model is developed to analyze the transient three-phase flow present. Argon gas bottom-stirred ladle with off-centered plugs has been used in this study. Volume of fluid method is used in a computational fluid dynamics (CFD) model to capture the behavior of slag, steel, and argon interfaces. The results are validated with data from literature. Eye opening and slag–steel interfacial area are calculated for different operating conditions and are compared with experimental and simulated results cited in literature. Desulfurization rate is then predicted using chemical kinetic equations, interfacial area, calculated from CFD model, and thermodynamic data, obtained from the Thermo-Calc software. Using the model, it is demonstrated that the double plug purging is more suitable than the single plug purging for the same level of total flow. The advantage is more distinct at higher flow rates as it leads higher interfacial area, needed for desulfurization and smaller eye openings (lower oxygen/nitrogen pickup).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ρ :

Density of the mixture (kg/m3)

ρ q :

Density of each phase q (steel, slag, argon) (kg/m3)

κ :

Local level of turbulent kinetic energy (m2/s2)

\( \kappa_{\text{in}} \) :

Inlet turbulent kinetic energy (m2/s2)

ϵ :

Local level of turbulent kinetic energy dissipation rate (m2/s3)

ϵ in :

Inlet turbulent kinetic energy dissipation rate (m2/s3)

μ :

Dynamic viscosity of molten steel (kg/ms))

μ t :

Turbulent viscosity of molten steel (kg/ms)

μ e :

Effective viscosity of molten steel (kg/ms)

\( \alpha_{\text{q}} \) :

Volume fraction of particular phase q

\( \Lambda \) :

Average optical basicity of the slag

\( \Lambda_{i} \) :

Optical basicity of individual oxides

ϵs :

Stirring power (W/ton)

A :

Interfacial area between slag and steel (m2)

(CaO):

CaO in the slag

(CaS):

CaS in the slag

C S :

Sulfide capacity of slag

D plug :

Diameter of the plug (m)

G k :

Generation of turbulent kinetic energy due to mean velocity gradient

G b :

Generation of turbulent kinetic energy due to buoyancy

g :

Acceleration due to gravity (m/s2)

H :

Height of liquid steel melt (m)

k s :

Mass transfer rate (m/s)

k [O] :

Equilibrium constant of aluminum oxidation reaction

L S :

Sulfur distribution ratio

M L :

Ratio of slag to steel weights

NLM:

Argon flow rate in Liter/Minute at STP

N fi :

Mole fraction of the particular oxide in the slag

[O]:

Dissolved oxygen in the melt

[O pct]:

Oxygen concentration in the liquid steel melt (wt pct)

p :

Local pressure in the fluid (pa)

P o :

Pressure at the top of the Ladle (atm)

Pr t :

Prandtl number

q :

Phase notations l: Liquid steel, g: argon gas, s: slag

Q :

Argon flow rate (N m3/s)

[S]:

Sulfur composition in the steel melt (wt pct)

(S):

Sulfur content in the slag (wt pct)

[S]L :

Final sulfur content in slag (wt pct)

[S]0 :

Initial sulfur content in slag(wt pct)

T :

Temperature (K)

t :

Time instant (s)

u i :

Velocity component of the fluid (m/s)

v :

Local velocity (m/s)

V in :

Inlet velocity at the plug (m/s)

V :

Volume of steel (m3)

W st :

Weight of liquid steel (ton)

References

  1. J. Aoki, L, Zhang, and B.G. Thomas: 3rd International Congress on Science and Technology of Steel Making, 2005, pp. 319–32.

  2. [2] S. Ganguly and S. Chakraborty: ISIJ International, 2004, vol. 44, No. 3, 537-546.

    Article  Google Scholar 

  3. [3] S. Ganguly and S. Chakraborty: Ironmaking and Steelmaking, 2008, vol. 35, No. 7, 524-530.

    Article  Google Scholar 

  4. [4] S. Joo and R. I. L. Guthrie: Metall. Trans. B, 23B 1992, 765-778.

    Article  Google Scholar 

  5. [5] M. Y. Zhu, I. Inomoto, N. Yamasaki and T. C. Hsiao: ISIJ Int., 1996, vol. 36, no 5, 503-511.

    Article  Google Scholar 

  6. [6] S. Johansen and F. Boysan: Metall. Mater. Trans. B, 1988, vol. 19B, 755-764.

    Article  Google Scholar 

  7. J. Aoki, B. G. Thomas and J. Peter: AISTech, Assoc. Iron Steel Technology, 2005, Warrendale, PA, pp. 1047-1056.

  8. [8] M. Warzecha, J. Jowsa, P. Warzecha and H. Pfeifer: Steel Research Int., 2008, vol. 79, No. 11, 852-860.

    Google Scholar 

  9. [9] M. Madan, D. Satish and D. Mazumdar: ISIJ Int., 2005, vol. 45, No. 5, 677-685.

    Article  Google Scholar 

  10. [10] D. Guo, L. Gu and G. Irons: Appl. Math. Model, 2002, vol. 26, 263-280.

    Article  Google Scholar 

  11. [11] D. Mazumdar, R. Yadav and B. B. Mahato: ISIJ Int., 2002, vol. 42, No. 1, 106-108.

    Article  Google Scholar 

  12. [12] M. R. Davidson: Appl. Math. Model, 1990, vol. 14, pp. 67-76.

    Article  Google Scholar 

  13. [13] H. Turkoglu and B. Farouk: Metall. Trans. B, 1990, vol. 21B, pp. 771-781.

    Article  Google Scholar 

  14. [14] W. Lou and M. Zhu: Metallurgical and Materials Transactions B, 2013, vol 44B, pp 1251-1263.

    Article  Google Scholar 

  15. [15] C. G. Mendez, N. Nigro and A. Cardona: J. Mater. Process. Tech., 2005, vol. 160, pp. 296-305.

    Article  Google Scholar 

  16. [16] J. Mandal, S. Patil, M. Madan and D. Mazumdar: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 479-487.

    Article  Google Scholar 

  17. [17] S. G. A. Brooks, and G. A. Irons: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 262-263.

    Article  Google Scholar 

  18. [18] D. Mazumdar and J. W. Evans: Metall. Mater. Trans. B, 2004, vol. 35B, no 2, pp. 400-404.

    Article  Google Scholar 

  19. [19] K. Krishnapisharody and G. A. Irons: Metall. Mater. Trans. B, 2006, vol. 37B, no.5 pp. 763-772.

    Article  Google Scholar 

  20. [20] K. Krishnapisharody and G. A. Irons: ISIJ International, 2008, vol. 48, pp. 1807-1809.

    Article  Google Scholar 

  21. [21] D. Mazumdar and J. W. Evans: ISIJ Int., 2004, vol. 44, No. 3, pp. 447-461.

    Article  Google Scholar 

  22. [22] D. Mazumdar and R. I. L. Guthrie: ISIJ Int., 1995, vol. 35, No. 1, pp. 1-20.

    Article  Google Scholar 

  23. [23] D. Sichen: Steel research int. 2012, 83, No. 9, pp.825-841

    Article  Google Scholar 

  24. [24] D. Mazumdar and J. W. Evans: “Modelling of steel making process”, p. 175, CRC press Taylor& Francis group, London, 2004.

    Google Scholar 

  25. [25] D. Q. GENG, H. LEI and J. C. HE: ISIJ Int., 2010, vol. 50, No. 11, pp. 1597-1605.

    Article  Google Scholar 

  26. J. Aoki, L. Zhang, and B.G. Thomas: 3rd International Congress on Science & Technology of Steelmaking, Association for Iron & Steel Technology, 2005, pp. 319–32.

  27. [27] J. P. Bellot, V. D. Felice, B. Dussoubs, A. Jardy, S. Hans: Metallurgical and Materials Transactions B, February 2014, vol 45, Issue 1, pp 13-21.

    Article  Google Scholar 

  28. [28] W. Lou and M. Zhu: Metallurgical and Materials Transactions B, June 2013, vol 44B,, pp 762-782.

    Article  Google Scholar 

  29. [29] S. W. P. Cloete, J. J. Eksteen and S. M. Bradshaw: Progress in Computational Fluid Dynamics, an International Journal, 2009, vol. 9, No. 6-7,pp. 345–356.

    Article  Google Scholar 

  30. C. A. Llanos, S. Garcia-Hernandez, J. A. Ramos-Banderas, J. de Barreto and G. Solorio-Diaz: ISIJ Int., 2010, vol. 50, No 3, pp. 396-402.

    Article  Google Scholar 

  31. [31] B. Li, H. Yin, C. Q. Zhou and F. Tsukihashi: ISIJ Int., 2008, vol. 48, No 12, pp. 1704-1711.

    Article  Google Scholar 

  32. [32] H. Liu, Z. Qi, M. Xu: Steel Research Int., 2011, vol. 82, No 4, pp. 440-458.

    Article  Google Scholar 

  33. [33] S. W.P. Cloete, J. J. Eksteen, S. M. Bradshaw: Minerals Engineering, 2013, vol. 46–47, pp. 16-24.

    Article  Google Scholar 

  34. [34] A. Huang, H. Harmuth, M. Doletschek, S. Vollmann, and X. Feng: Steel Res. Int., 2015, vol. 86, No 12, pp. 1147-454.

    Article  Google Scholar 

  35. [41] E.T. Turkdogan: Fundamentals of steelmaking, p. 245, The Institute of materials, London, 1996.

    Google Scholar 

  36. [35] L. Jonsson, D. Sichen and P. Jonsson: ISIJ Int., 1998, vol. 38, No 3, pp. 260-267.

    Article  Google Scholar 

  37. [36] M.A.T. Andersson, L. T. I. Jonsson and P. G. Jonsson: ISIJ Int., 2000, vol. 40, no 11, pp. 1080-1088.

    Article  Google Scholar 

  38. [37] W. Lou, M. Zhu: ISIJ Int., 2015, vol. 55, No. 5, pp. 961-969.

    Article  Google Scholar 

  39. [38] W. Lou, M. Zhu: Metallurgical and Materials Transactions B, October 2014, vol 45, Issue 5, pp 1706-1722.

    Article  Google Scholar 

  40. [39] A. Ghosh: Secondary steelmaking, principles and applications, p. 200, CRC Press LLC, New York 2001.

    Google Scholar 

  41. R.J. Fruehan: The Making, Shaping and Treating of Steel, 11th ed., The AISE Steel Foundation, Pittsburgh, 1998, p. 661.

  42. ANSYS® Academic Research, Fluent, Release 15.

  43. M.B. Goldschmit and G.N. Venturini: European Congress on Computational Methods in Applied Sciences and Engineering, Jyvaskyla, 2004.

  44. [44] L. Zhang: JOM, September 2012, Vol 64, Issue 9, pp. 1059-1062.

    Article  Google Scholar 

  45. Z. Zhang: PhD thesis, 2010, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.

  46. E. Pretorius: Fundamentals of EAF and Ladle Slags and Ladle Refining Principles, Bakers Refractories.

  47. [47] Z. Slovic, K T. Raic, L. Nedeljkovic, T. V.Husovic: Materials and technology, 2012, vol. 46, pp. 683-688.

    Google Scholar 

  48. [48] M. Andersson, P.G. Jonsson and M.M.Nzotta: ISIJ Int., 1999, vol. 40, No. 11, pp. 1140-1149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Singh.

Additional information

Manuscript submitted September 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, U., Anapagaddi, R., Mangal, S. et al. Multiphase Modeling of Bottom-Stirred Ladle for Prediction of Slag–Steel Interface and Estimation of Desulfurization Behavior. Metall Mater Trans B 47, 1804–1816 (2016). https://doi.org/10.1007/s11663-016-0620-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0620-2

Keywords

Navigation