Skip to main content
Log in

Effect of Fluorine on the Structure of High Al2O3-Bearing System by Molecular Dynamics Simulation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Calcium aluminosilicate is the most important slag system in continuous casting, while CaF2 is commonly used as a fluxing agent in mold fluxes. In this study, the structural properties of the CaO-Al2O3-SiO2-CaF2 system with varying fluorine content have been investigated by molecular dynamics simulation using the pairwise potential model. The results showed that with the substitution of oxygen ions by fluorine ions, the average bond length of Si-O remained unchanged, while the average bond length of Al-O increased from 1.74 to 1.75 Å. The addition of fluorine contributed to the increase in the bridging oxygen proportion and the network connectivity (Q n) degree, suggesting that the polymerization of melts was enhanced. Meanwhile, the threefold-coordinated Al was found when mass fraction of fluorine was increased, and it was due to that the fluorine ions substituted the oxygen ions and formed the [AlO3F] tetrahedron. The Al avoidance principle is not applicable in the CaO-Al2O3-SiO2-CaF2 system with a high content of Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-409.

    Article  Google Scholar 

  2. S. Stuart, J. Keegan, M. Nicole, R. Andrew, and T. James: Iron Steel Technol., 2008, vol. 5, pp. 38-49.

    Google Scholar 

  3. W. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 66-74.

    Article  Google Scholar 

  4. T. Wu, Q. Wang, S. He, J. Xu, X. Long, and Y. Lu: Steel. Res. Int., 2012, vol. 83, pp. 1194-202.

    Article  Google Scholar 

  5. B. Lu, W. Wang, K. Chen, and B. Jiang: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1496-509.

    Article  Google Scholar 

  6. B. Jiang, W. Wang, I. Sohn, J. Wei, L. Zhou, and B. Lu: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1057-67.

    Article  Google Scholar 

  7. R.W. Luth: Am. Mineral., 1988, vol. 73, pp. 297-305.

    Google Scholar 

  8. B.O. Mysen and D. Virgo: Contrib. Mineral. Petrol., 1985, vol. 91, pp. 205-20.

    Article  Google Scholar 

  9. J.F. Stebbins and Q. Zeng: J. Non-Cryst. Solids., 2000, vol. 262, pp. 1-5.

    Article  Google Scholar 

  10. Q. Zeng and J.F. Stebbins: Am.Mineral., 2000, vol. 85, pp. 863-7.

    Google Scholar 

  11. P.M. Bills: J. Iron Steel Inst., 1963, vol. 201, pp. 133-40.

    Google Scholar 

  12. A. Stamboulis, R.G. Hill, and R.V. Law. J. Non-Cryst. Solids., 2004, vol. 333, pp. 101-7.

    Article  Google Scholar 

  13. T.J. Kiczenski and J.F. Stebbins: J. Non-Cryst. Solids., 2002, vol. 306, pp. 160-8.

    Article  Google Scholar 

  14. K. Hirao and K. Kawamura: Materials Design Using Personal Computer, Shokabo, Tokyo, 1994, pp. 52–54.

  15. T. Jia: Sci. Technol. Translation (Chongqing)., 1994, vol. 1, pp. 54-7.

    Google Scholar 

  16. M. Gomez, C.I. Garcia, D.M. Haezebrouck, and A.J. DeArdo: ISIJ Int., 2009, vol. 49, pp. 302-11.

    Article  Google Scholar 

  17. D.K. Belashchenko: Russ. Chem. Rev., 1997, vol. 66, pp. 733-62.

    Article  Google Scholar 

  18. G.E. Brown, G.V. Gibbs, and P.H. Ribbe: Am. Mineral., 1969, vol. 54, pp. 1044-61.

    Google Scholar 

  19. Y. Sasaki, M. Iguchi, and M. Hino: ISIJ Int., 2007, vol. 47, pp. 643-7.

    Article  Google Scholar 

  20. D.R. Neuville, L. Cormier, V. Montouillout, and D. Massiot: J. Non-Cryst. Solids., 2007, vol. 353, pp. 180-4.

    Article  Google Scholar 

  21. A. Tandia, N.T. Timofeev, J.C. Mauro, and K.D. Vargheese: J. Non-Cryst. Solids., 2011, vol. 357, pp. 1780-6.

    Article  Google Scholar 

  22. X. Xue and M. Kanzaki: J. Phys. Chem. B., 1999, vol. 103, pp. 10816-30.

    Article  Google Scholar 

  23. J.F. Stebbins, J.V. Oglesby, and S. Kroeker: Am. Mineral., 2001, vol. 86, pp. 1307–11.

    Google Scholar 

  24. M.J. Toplis, D.B. Dingwell, and T. Lenci: Geochim. Cosmochim. Acta., 1997, vol. 61, pp. 2605-12.

    Article  Google Scholar 

  25. K. Zheng, Z. Zhang, F. Yang, and S. Sridhar: ISIJ Int., 2012, vol. 52, pp. 342-9.

    Article  Google Scholar 

  26. W. Loewenstein: Am.Mineral., 1954, vol. 39, pp. 92-6.

    Google Scholar 

  27. L. Cormier, D. Ghaleb, D.R. Neuville, J.M. Delaye, and G. Calas: J. Non-Cryst. Solids., 2003, vol. 332, pp. 255-70.

    Article  Google Scholar 

  28. Y. Sasaki and K. Ishii: ISIJ Int., 2004, vol. 44, pp. 660-4.

    Article  Google Scholar 

  29. Y. Liu and H. Nekvasil: Am. Mineral., 2002, vol. 87, pp. 339-46.

    Google Scholar 

  30. J.F. Stebbins, S. Kroeker, S.K. Lee, and T.J. Kiczenski: J. Non-Cryst. Solids., 2000, vol. 275, pp. 1-6.

    Article  Google Scholar 

  31. S.C. Kohn, R. Dupree, M.G. Mortuza, and C.M.B. Henderson, Am. Mineral., 1991, vol. 76, pp. 309-12.

    Google Scholar 

  32. T. Schaller, D.B. Dingwell, H. Keppler, W. Knöller, L. Merwin, and A. Sebald: Geochim. Cosmochim. Acta., 1992, vol. 56, pp. 701-7.

    Article  Google Scholar 

  33. J.A. Tossell: Am. Mineral., 1993, vol. 78, pp. 16-22.

    Google Scholar 

Download references

Acknowledgments

The authors would like to deeply appreciate the fund from Chongqing Research Program of Foundation and Advanced Technology (Project No. cstc2013jcyjA50003) and National Training Programs of Innovation for Undergraduates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping He.

Additional information

Manuscript submitted July 25, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, G., He, S., Wu, T. et al. Effect of Fluorine on the Structure of High Al2O3-Bearing System by Molecular Dynamics Simulation. Metall Mater Trans B 46, 2005–2013 (2015). https://doi.org/10.1007/s11663-015-0354-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0354-6

Keywords

Navigation