Skip to main content

Advertisement

Log in

Numerical Analysis of Carbon Monoxide–Hydrogen Gas Reduction of Iron Ore in a Packed Bed by an Euler–Lagrange Approach

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In recent years, various methods to decrease carbon dioxide emissions from iron and steel making industries have been developed. The latest blast furnace operation design is intended to induce the low reducing agent operation, highly reactive material is considered a promising way to improve reaction efficiency. Another method utilizes hydrogen in the blast furnace process for highly efficient reduction. Mathematical modeling may help to predict complex in-furnace phenomena, including momentum, heat, and mass transport. However, the current macroscopic continuum model gives no information on the individual particles. In this work, a new approach based on the discrete element method was introduced to consider the interaction between particles under fluid flow in accordance with the arrangement and properties of individual particles. We used an Euler–Lagrange method to precisely understand the influence of the reaction conditions on the behavior of coke and ore particles in three dimensions. The heterogeneity of the reaction rate and temperature distribution was observed to be influenced by the particle arrangement. The endothermic and exothermic reactions influenced each other in the packed bed. Temperature distributions nearly correlated with the gas velocity distribution because convection processes greatly affected the reaction rate. Although convection heat transfer was not a dominant issue in the packed bed, promotion of the reaction by a gas flow was effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Surface area (m 2)

a :

Rate coefficient of multi-interface unreacted core model (m2 Pa mol/kJ)

B :

Fluid drag coefficient (–)

C p :

Specific heat capacity kJ/(kg K)

c :

Mol concentration (mol/m3)

D :

Mass transfer constant in a particle (m/s)

d :

Particle diameter (m)

\( \varvec{F} \) :

Force (N)

f :

Catalytic factor (–)

\( \varvec{g} \) :

Gravity (m/s2)

H :

Enthalpy (kJ/mol)

h :

Heat transfer coefficient

I :

Moment of inertia (kg m2)

K :

Equilibrium constant (–)

k :

Rate coefficient (m/s)

l :

Relative displacement increment of particle (m)

M :

Molecular weight (g/mol)

m :

Mass (kg)

N :

Particle number (–)

p :

Pressure (Pa)

Q :

Quantity of heat (kJ/s)

R :

Reaction rate (mol/s)

r :

Radius (m)

S :

Generation rate (kg/s)

T :

Temperature (K)

t :

Time (s)

V :

Volume (m3)

\( \varvec{v} \) :

Velocity (m/s)

w :

Overall reduction degree of ore (–)

x :

Mole fraction (–)

α :

Particle–fluid momentum exchange coefficient (kg/(m3 s))

β :

Heat transfer conductance (kJ/(K s))

Γ :

Diffusion coefficient (m2/s)

ɛ :

Void fraction (–)

η :

Dashpot coefficient (–)

θ :

Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4)

λ :

Heat conductivity (W/(m K))

μ :

Frictional coefficient (–)

ν:

Stoichiometric coefficient (–)

ρ :

Density (kg/m3)

σ :

Collision diameter (10−10 m)

τ :

Spring coefficient (N/s)

ϕ :

Emissivity (–)

ψ :

Mass fraction (–)

\( \varvec{\omega} \) :

Angular velocity (/s)

Ω:

Collision integral (–)

b:

Bed

c:

Chemical reaction

ct:

Contact

cd:

Conduction

D:

Mass transfer

e:

Effective

f:

Fluid

I:

Chemical species

i :

Index of particle

j :

Vicinity particle index of particle i

k:

Number of interface

l:

Index of chemical reaction equation

n:

Normal direction

p:

Particle

R:

Reaction

r:

Rotational

s:

Shear direction

NU :

Nusselt number

Pr :

Prandtl number

Re :

Reynolds number

Sc :

Schmidt number

Sh :

Sherwood number

Φ :

Thiele number

References

  1. H. Nogami, Y. Ueki, T. Murakami and S. Ueda: Tetsu-to-Hagané, 2014, vol. 100, pp. 227–45.

    Article  Google Scholar 

  2. M. Chu, H. Nogami and J. Yagi: ISIJ Int., 2004, vol. 44, pp. 801–8.

    Article  Google Scholar 

  3. H. Nogami, S. Kitamura, J. Yagi and P.R. Austin: ISIJ Int., 2006, vol. 46, pp. 1759–66.

    Article  Google Scholar 

  4. H. Nogami, Y. Kashiwaya and D. Yamada: ISIJ Int., 2012, vol. 52, pp. 1523–27.

    Article  Google Scholar 

  5. A. Rist and N. Meysson: J. Met., 1967, vol. 19, pp. 50–9.

    Google Scholar 

  6. J. Yagi : ISIJ Int., 1991, vol. 31, 387–94.

    Article  Google Scholar 

  7. X.F. Dong, A.B. Yu, S.J. Chew and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 330–49.

    Article  Google Scholar 

  8. J.A. Castro, H. Nogami, and J. Yagi: ISIJ Int., 2002, vol. 42, pp. 44–52.

    Article  Google Scholar 

  9. P.R. Austin, H. Nogami and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 458–67.

    Article  Google Scholar 

  10. P.R. Austin, H. Nogami and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 748–55.

    Article  Google Scholar 

  11. B. Wright, P. Zulli, Z.Y. Zhou, A.B. Yu: Powder Technol., 2011, vol. 208, pp. 86–97.

    Article  Google Scholar 

  12. P.D. Cundall and O.D.L. Strack: Geotechnique, 1979, vol. 29, pp. 47–65.

    Article  Google Scholar 

  13. Y. Yu and H. Saxén: ISIJ Int., 2012, vol. 52, pp. 788–96.

    Google Scholar 

  14. A.T. Adema, Y. Yang and R. Boom: ISIJ Int., 2010, vol. 50, pp. 954–61.

    Article  Google Scholar 

  15. S. Natsui, H. Nogami, S. Ueda, J. Kano, R. Inoue and T. Ariyama: ISIJ Int., 2011a, vol. 51, pp. 41–50.

    Article  Google Scholar 

  16. S. Natsui, H. Nogami, S. Ueda, J. Kano, R. Inoue and T. Ariyama: ISIJ Int., 2011b, vol. 51, pp. 51–8.

    Article  Google Scholar 

  17. Z.Y. Zhou, H.P. Zhu, B. Wrighta, A.B. Yu and P. Zulli: Powder Technol., 2011, vol. 208, pp. 72–85.

    Article  Google Scholar 

  18. Z.Y. Zhou, H.P. Zhu, A.B. Yu and P. Zulli: ISIJ Int., 2011, vol. 50, pp. 515–23.

    Article  Google Scholar 

  19. S. Natsui, T. Kon, S. Ueda, J. Kano, R. Inoue, T. Ariyama and H. Nogami: Tetsu-to-Hagané, 2012, vol. 98, pp. 341–50.

    Article  Google Scholar 

  20. S. Natsui, R. Shibasaki, T. Kon, S. Ueda, R. Inoue and T. Ariyama: ISIJ Int., 2013, vol. 53, pp. 1770–78.

    Article  Google Scholar 

  21. H. Zhou, G. Flamant and D. Gauthier: Chem. Eng. Sci., 2004, vol. 59, pp. 4193–203.

    Article  Google Scholar 

  22. H. Zhou, G. Flamant and D. Gauthier: Chem. Eng. Sci., 2004, vol. 59, pp. 4205–15.

    Article  Google Scholar 

  23. Y. Kaneko, T. Shiojima and M. Horio: Chem. Eng. Sci., 1999, vol. 54, pp. 5809–21.

    Article  Google Scholar 

  24. T. Sakurai, T. Minami, T. Kawaguchi, T. Tsuji, T. Tanaka and Y. Tsuji: Trans. Jpn Soc. Mech. Eng. Ser. B, 2009, vol. 75, pp. 1041–48.

    Google Scholar 

  25. W.L. Vargas and J.J. McCarthy: Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 4847–56.

    Article  Google Scholar 

  26. N. Wakao, S. Kaguei and T. Funazkri: Chem. Eng. Sci., 1979, vol. 34, pp. 325–36.

    Article  Google Scholar 

  27. W.E. Ranz and W.R. Marshall, Jr.: Chem. Eng. Prog., 1952, vol. 48, pp. 141–6, 173–80.

  28. H. Nogami, T. Yamamoto and K. Miyagawa: Tetsu-to-Hagané, 2010, vol. 96, pp. 319–27.

    Article  Google Scholar 

  29. N. Wakao and T. Funazkri: Chem. Eng. Sci., 1978, vol. 33, pp. 1375–384.

    Article  Google Scholar 

  30. T. Usui, M. Naito, T. Murayama and Z. Morita: Tetsu-to-Hagané, 1994, vol. 80, pp. 431–9.

    Google Scholar 

  31. O. Levenspiel: Chemical Reaction Engineering, 3rd ed., Wiley, New York, 1999, pp. 385–8.

    Google Scholar 

  32. S. Kobayashi and Y. Omori: Tetsu-to-Hagané, 1977, vol. 63, pp. 1081–9.

    Google Scholar 

  33. N. Miyasaka and S. Kondo: Tetsu-to-Hagané, 1968, vol. 54, pp. 1427–31.

    Google Scholar 

  34. R.H. Spitzer, F.S. Manning and W.O. Philbrook: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1715–24.

    Google Scholar 

  35. Y. Hara, M. Sakawa and S. Kondo: Tetsu-to-Hagané, 1976, vol. 62, pp. 315–23.

    Google Scholar 

  36. R. Takahashi, Y. Takahashi, J. Yagi and Y. Omori: Ironmaking Conf. Proc., 1983, vol. 43, pp. 485–500.

    Google Scholar 

  37. O. Kubaschewski and C.B. Alcock: Metallurgical Thermochemistry, 5th ed., Pergamon, London, 1979.

    Google Scholar 

  38. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, 2nd ed., Wiley, New York, 1976, pp. 23, 274, 525, 866.

  39. B.E. Poling, J.M. Prausnitz, and J.P. O’Connell: The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, 2000, chap. 11.6, B.1.

  40. C.R. Wilke: J. Chem. Phys., 1950, vol. 18, pp. 517–9.

    Article  Google Scholar 

  41. S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue and T. Ariyama: Chem. Eng. Sci., 2012, vol. 71, pp. 274–82.

    Article  Google Scholar 

  42. S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89–94.

    Google Scholar 

  43. C.Y. Wen and Y.H. Yu (1966): Chem. Eng. Prog. Symp. Series, vol.62, 100–111.

    Google Scholar 

  44. Y. Tsuji, T. Kawaguchi and T. Tanaka: Powder Technol., 1993, vol.77, pp.79–87.

    Article  Google Scholar 

Download references

Acknowledgments

A part of this research was supported by Steel Foundation for Environmental Protection Technology (SEPT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shungo Natsui.

Additional information

Manuscript submitted March 8, 2014.

Appendix

Appendix

DEM–CFD Combining Model for Particle–Fluid Motion

The DEM–CFD model is briefly described here for completeness. The same procedure was used in previous research.[15,16,44] The governing equations for the translational and rotational motion of particle i can be described as

$$ m_{\text{p}} \frac{{d\varvec{v}_{\text{p}} }}{dt} = \mathop \sum \limits_{j \ne i}^{{N_{\text{ct}} }} \varvec{F}_{\text{c}} + \varvec{F}_{{f}} + \varvec{F}_{\text{g}} , $$
(50)
$$ I_{\text{p}} \frac{{d\varvec{\omega}_{\text{p}} }}{dt} = r_{\text{p}} \mathop \sum \limits_{j \ne i}^{{N_{\text{ct}} }} \left( {\varvec{F}_{{cs}} - \varvec{F}_{\text{r}} } \right), $$
(51)

where \( m_{\text{p}} \) is the particle mass, \( \varvec{v}_{\text{p}} \) is the particle velocity, \( t \) is time, \( \varvec{F}_{\text{c}} \) is the particle–particle contact force, \( N_{\text{c}} \) is the contact particle number, \( \varvec{F}_{{f}} \) is the particle–fluid interaction force, \( \varvec{F}_{\text{g}} \) is the gravity force, \( I_{\text{p}} \) is the moment of inertia, \( \varvec{\omega}_{\text{p}} \) is the angular velocity, \( r_{\text{p}} \) is the particle radius, \( \varvec{F}_{\text{cn}} \) is the normal component of the contact force, \( \varvec{F}_{\text{cs}} \) is the tangential component of contact force, and \( \varvec{F}_{\text{r}} \) is the rolling friction force. The interparticle contact force was calculated by the “soft sphere” assumption based on Hertz’s contact theory:

$$ \varvec{F}_{\text{c}} = \varvec{F}_{\text{cn}} + \varvec{F}_{\text{cs}} , $$
(52)
$$ \varvec{F}_{\text{cn}} = - \tau_{n} l_{n} - \eta_{n} \varvec{v}_{{{\text{p}},n}} , $$
(53)
$$ \varvec{F}_{\text{cs}} = \left\{ {\begin{array}{*{20}l} { - \tau_{\text{s}} l_{\text{s}} - \eta_{\text{s}} \varvec{v}_{{{\text{p}},{\text{s}}}}\quad \left( {\left| {\varvec{F}_{\text{cs}} } \right| < \mu \left| {\varvec{F}_{\text{cn}} } \right|} \right)} \\ { \mu \varvec{F}_{\text{cn}} \quad \left( {\left| {\varvec{F}_{\text{cs}} } \right| \ge \mu \left| {\varvec{F}_{\text{cn}} } \right|} \right)} \\ \end{array} ,} \right. $$
(54)

where \( \tau \) is the spring coefficient, \( \eta \) is the dashpot coefficient, \( l \) is the relative displacement increment at a discrete time \( \Delta t \), and \( \mu \) is the frictional coefficient. Refer to previous article for further information to calculate \( \tau \), \( \eta \), and \( \varvec{F}_{r} \) [15].

The motion of the continuum fluid is calculated from the equation of continuity and Navier–Stokes equation based on local mean variables over a calculational cell.

$$ \frac{\partial }{\partial t}\left( {\varepsilon \rho_{\text{g}} } \right) + \nabla \cdot \left( {\varepsilon \rho_{\text{g}} \varvec{v}_{\text{g}} } \right) = 0, $$
(55)
$$ \frac{\partial }{\partial t}\left( {\varepsilon \rho_{\text{g}} } \right) + \nabla \cdot \left( {\varepsilon \rho_{\text{g}} \varvec{v}_{\text{g}} \varvec{v}_{\text{g}} } \right) = - \varepsilon \nabla p_{\text{g}} + \varepsilon \mu_{\text{g}} \nabla^{2} \varvec{v}_{\text{g}} + \varepsilon \rho_{\text{g}} \varvec{g} + \varvec{F}_{\text{p}} , $$
(56)

where \( \varepsilon \) is the void fraction, ρ g is the fluid density, v g is the fluid velocity, \( p_{\text{g}} \) is the fluid pressure, and \( \mu_{\text{g}} \) is the fluid viscosity. The void fraction \( \varepsilon \) was calculated from the proportion of the solid existing within a local cell volume (Natsui et al.[15]). To determine \( \varvec{F}_{\text{p}} \), Ergun’s equation (1952)[42] was applied in the low-void fraction region \( \left( {\varepsilon < 0.8} \right) \), and Wen-Yu’s equation (1966)[43] was applied in the high-void fraction region \( \left( {\varepsilon > 0.8} \right) \):

$$ \varvec{F}_{\text{p}} = \alpha \left( {\varvec{v}_{\text{p}} - \varvec{v}_{\text{g}} } \right), $$
(57)

where \( \alpha \) is the particle–fluid momentum exchange coefficient. The drag force coefficient was derived from the Schiller–Naumann equation expressed as a function of the particle Reynolds number[44]:

$$ \alpha = \left\{ {\begin{array}{*{20}l} {\frac{{\mu_{\text{g}} \left( {1 - \varepsilon } \right)}}{{\rho_{\text{g}} \varepsilon d_{\text{p}}^{2} }}\left[ {150\left( {1 - \varepsilon } \right) + 1.75 {Re}_{\text{p}} } \right]\quad\left( {\varepsilon \le 0.8} \right)} \\ {\frac{3}{4}B\frac{{\mu_{\text{g}} \left( {1 - \varepsilon } \right)}}{{\rho_{\text{g}} \varepsilon^{2.7} d_{\text{p}}^{2} }} {Re}_{\text{p}}\qquad\left( {\varepsilon > 0.8} \right)} \\ \end{array} } \right., $$
(58)
$$ B = \left\{ {\begin{array}{*{20}l} {\frac{24}{{{Re}_{\text{p}} }}\left( {1 + 0.15 {Re}_{\text{p}}^{0.687} } \right) \qquad \left( {{Re}_{\text{p}} \le 1000} \right)} \\ {0.43\qquad \left( {{Re}_{\text{p}} > 1000} \right)} \\ \end{array} } \right., $$
(59)
$$ {{Re}}_{\text{p}} = \frac{{\left| {\varvec{v}_{\text{p}} - \varvec{v}_{\text{g}} } \right|\rho_{\text{g}} \varepsilon d_{\text{p}} }}{{\mu_{\text{g}} }}. $$
(60)

F f is distributed to particles as a reaction force of F p:

$$ \varvec{F}_{\text{d}} = \frac{{\pi d_{\text{p}} \beta_{\text{t}} }}{6(1 - \varepsilon )}(\upsilon_{\text{g}} - \upsilon_{\text{p}} ). $$
(61)

Rate Coefficient of the Multi-interface Unreacted Core Model

A gas reduction reaction occurs at the interface of a particle, and thus iron ore can be applied to the unreacted core model.[34,35] In this research, the temperature range was assumed to be T > 848 K (575 °C), and the composition of iron oxide changes with the degree of oxidation; i.e., Fe2O3 (hematite), Fe3O4 (magnetite), FeO (wüstite), Fe (iron). Since different reduction reactions occur on the inside and outside of a particle, it was necessary to set up a multi-reaction interface (see Figure 2). Table II shows the rate coefficients of the multi-interface unreacted core model in each interface. Here, in this section, A is the chemical reaction resistance, k c is the chemical reaction rate coefficient, B is the inner particle diffusion resistance, D e is the inner particle effective diffusion coefficient, F is the surface mass transfer resistance, k F is the surface mass transfer coefficient, R is the reduction degree, W is the ore flux, Y is the mol fraction of gaseous component, and K is the equilibrium constant.

Table II Rate Coefficients of the Multi-interface Unreacted Core Shrinking Model for Iron Ore Reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natsui, S., Kikuchi, T. & Suzuki, R.O. Numerical Analysis of Carbon Monoxide–Hydrogen Gas Reduction of Iron Ore in a Packed Bed by an Euler–Lagrange Approach. Metall Mater Trans B 45, 2395–2413 (2014). https://doi.org/10.1007/s11663-014-0132-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0132-x

Keywords

Navigation