Skip to main content
Log in

Innovative Methodology to Enrich Britholite (Ca3Ce2[(Si,P)O4]3F) Phase from Rare-Earth-Rich Slag by Super Gravity

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new approach to enriching britholite phase from the rare-earth-rich slag by super gravity was investigated. The Bayan Obo iron ore, which was used as raw material, was reduced and melting separated to produce iron nugget and rare-earth-rich slag. Subsequently, the slag was heat-treated and enriched in the super gravity filed. The volume fraction and equivalent diameter of britholite phase were measured by scanning electron microscope (SEM) and image analyzer, whereas the mineral composition and chemical component were characterized by X-ray diffraction and X-ray fluorescence. The results indicated that the samples obtained by the gravity coefficient G ≥ 500, t ≥ 15 minutes, and T ≥1423 K (1150 °C) show significant layers and britholite phase present gradient size distribution in the sample along the super gravity. The layered sample was central cut and characterized by SEM, and it is difficult to find any britholite particles in the upper area of the sample. The britholite phase gathers at the middle and bottom areas of the sample. The mechanism of moving speed of britholite particles in super gravity field was discussed, and the conclusion indicates that the moving speed of britholite particles is proportional to the square of the britholite particle size. As a result, large britholite particles move farther than the small ones and gather at the bottom of the sample, whereas small britholite particles accumulate in the middle of the sample. Under the hypothesis that rare earth (RE) exists in the slag in terms of RE2O3, with the gravity coefficient G = 500, t = 15 minutes, and T = 1423 K (1150 °C), the mass fraction of RE2O3 in the concentrate is up to 23.29 pct whereas that of the tailing is just 5.57 pct. Considering that the mass fraction of RE2O3 is 12.01 pct in the parallel sample, the recovery ratio of RE in the concentrate is up to 71.19 pct by centrifugal enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.F. Yang, H.R. Fan, M. Santosh, F.F. Hu, and K.Y. Wang: Ore Geology Rev., 2011, vol. 40, pp. 122-31.

    Article  Google Scholar 

  2. H. Shimazaki, R. Miyawaki, K. Yokoyama, and S. Matsubara: Bull. Natl. Sci. Mus. Tokyo Ser. C, 2008, vol. 34, pp. 1–26.

  3. Y.G. Ding, Q.G. Xue, G. Wang and J.S. Wang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 28-36.

    Article  Google Scholar 

  4. C.K. Gupta and N. Krishnamurthy: Int. Mater. Rev., 1992, vol. 37, pp. 197-248.

    Article  Google Scholar 

  5. A. Jordens, R.S. Sheridan, N.A. Rowson, and K.E. Waters: Miner. Eng., 2013, DOI:10.1016/j.mineng.2013.09.011.

  6. P. Gao, Y.X. Han, Y.S. Sun, and Y.F. Mu: Adv. Mater. Res., 2012, vol. 454, pp. 221-6.

    Google Scholar 

  7. Y.G. Ding, J.S. Wang, G. Wang, and Q.G. Xue: J. Iron Steel Res. Int., 2012, vol. 19, pp. 9-13.

    Article  Google Scholar 

  8. G. Wang, J.S. Wang, Y.G. Ding, S. Ma, and Q.G. Xue: ISIJ Int., 2012, vol. 52, pp. 45-51.

    Article  Google Scholar 

  9. C.S. Liao, S. Wu, F.X. Cheng, S.L. Wang, Y. Liu, B. Zhang, and C.H. Yan: J. Rare Earths, 2013, vol. 31, pp. 331-6.

    Article  Google Scholar 

  10. Z.T. Sui, Z.Z. Guo, L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, and G.Q. Li: J. Mater. Metall., 2006, vol. 5, pp. 93-7.

    Google Scholar 

  11. Z.T. Sui, P.X. Zhang, and C. Yamauchi: Acta Mater., 1999, vol. 47, pp. 1337-44.

    Article  Google Scholar 

  12. Y.G. Ding, J.S. Wang, G. Wang, and Q.G. Xue: ISIJ Int., 2012, vol. 52, pp. 1772-7.

    Article  Google Scholar 

  13. X.P. Zheng and H.K. Lin: Miner. Eng., 1994, vol. 7, pp 1495-503.

    Article  Google Scholar 

  14. X.Y. Xu, M.Y. Li, and M.C. Hao: Chin. Rare Earths, 1980, vol. 18, pp. 1-7.

    Google Scholar 

  15. T. Zhao, J.Q. Zhang, and Q.M. He: Chin. Rare Earths, 2006, vol. 27, pp. 47-9.

    Google Scholar 

  16. S. Sukenaga, S. Haruki, Y. Nomoto, N. Saito, and K. Nakashima: ISIJ Int., 2011, vol. 51, pp. 1285-9.

    Article  Google Scholar 

  17. Y. Watanabe, A. Kawamoto, and K. Matsuda: Compos. Sci. Technol., 2002, vol. 62, pp. 881-8.

    Article  Google Scholar 

  18. Y. Xie, C.M. Liu, Y.B. Zhai, K. Wang, and X.D. Ling: Rare Met., 2009, vol. 28, pp. 405-11.

    Article  Google Scholar 

  19. T.P.D Rajan, R.M. Pillai, and B.C. Pai: Mater. Character., 2010, vol. 61, pp. 923-8.

    Article  Google Scholar 

  20. G. Chirita, D. Soares, and F. Silva: Mater. Design, 2008, vol. 29, pp. 20-7.

    Article  Google Scholar 

  21. L.X. Zhao, Z.C. Guo, Z. Wang, and M.Y. Wang: Metall. Mater. Trans. A, 2010, vol. 21, pp. 670-4.

    Article  Google Scholar 

  22. L.X. Zhao, Z.C. Guo, Z. Wang, and M.Y. Wang: Metall. Mater. Trans. B, 2010, vol. 21, pp. 505-7.

    Article  Google Scholar 

  23. H.G. Fu, Q. Xiao, J.C. Kuang, Z.Q. Jiang, and H.D. Xing: Mat. Sci. Eng. A, 2007, vol. 466, pp. 160-65.

  24. N.J. Whisler and T.Z. Kattamis: J. Cryst. Growth, 1972, vol. 15, pp. 20-4.

    Article  Google Scholar 

  25. B.P. Krishnan, H.R. Shetty, and P.K. Rohatgi: Trans. AFS, 1976, vol. 84, pp. 73-80.

    Google Scholar 

  26. Q.M Liu, Y.N Jiao, Y.S. Yang, and Z.Q. Hu: Metall. Mater. Trans. B, 1996, vol. 27, pp. 1025-9.

    Article  Google Scholar 

  27. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2002, vol. 33, pp. 723-9.

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by Key Program of National Natural Science Foundation of China (No. 51234001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhancheng Guo.

Additional information

Manuscript submitted January 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Guo, Z. Innovative Methodology to Enrich Britholite (Ca3Ce2[(Si,P)O4]3F) Phase from Rare-Earth-Rich Slag by Super Gravity. Metall Mater Trans B 45, 1272–1280 (2014). https://doi.org/10.1007/s11663-014-0071-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0071-6

Keywords

Navigation