Skip to main content
Log in

Diffusion Growth and Mechanical Properties of Intermetallic Compounds in Mg–Pr System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The diffusion behavior and the mechanics performance of the Mg–Pr system have been characterized by the application of the diffusion coupling technique. Within the diffusion zone, four distinct intermetallic compounds (IMCs), Mg12Pr, Mg41Pr5, Mg3Pr and MgPr have been identified. A comprehensive analysis has been conducted to decipher the growth mechanism and diffusion dynamics of the four IMCs. The Mg41Pr5 exhibits the greatest constant to grow and has been established as the primary compound formed within the diffusion zone. As the temperature increases, the diffusion coefficient for each IMC exhibits a gradual increment. Furthermore, the mechanics performance of Mg–Pr IMCs has been explored through a combination of nanoindentation techniques and first-principles calculations. The investigations unveil that Mg3Pr has the highest hardness while Mg12Pr possesses the largest Young’s modulus. These findings contribute significantly to our comprehension of the mechanical attributes and growth mechanism of IMCs in rare-earth magnesium alloys, offering valuable insights for optimizing alloy design and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(Adapted from Refs. [68]and [69], under the terms of the Creative Commons CC BY license.)

Similar content being viewed by others

References

  1. J. Song, J. Chen, X. Xiong, X. Peng, D. Chen, and F. Pan: J. Magnes. Alloys, 2022, vol. 10, pp. 863–98.

    Article  CAS  Google Scholar 

  2. J. Zheng, Q. Wang, Z. Jin, and T. Peng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1677–85.

    Article  Google Scholar 

  3. Z. Savaedi, H. Mirzadeh, R.M. Aghdam, and R. Mahmudi: Mater. Today Commun., 2022, vol. 33, p. 104825.

    Article  CAS  Google Scholar 

  4. Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, and K. Chou: J. Mater. Sci. Technol., 2020, vol. 44, pp. 171–90.

    Article  CAS  Google Scholar 

  5. S.K. Das, Y. Kim, T.K. Ha, and I. Jung: Calphad, 2013, vol. 42, pp. 51–58.

    Article  CAS  Google Scholar 

  6. C.J. Silva, A. Kula, R.K. Mishra, and M. Niewczas: J. Alloys Compd., 2016, vol. 687, pp. 548–61.

    Article  CAS  Google Scholar 

  7. A. Prasad, S.Y. Lee, S.S. Singh, N.N. Gosvami, and J. Jain: Mater. Chem. Phys., 2022, vol. 277, p. 125537.

    Article  CAS  Google Scholar 

  8. Y.B. Kang, L.L. Jin, P. Chartrand, A.E. Gheribi, K.W. Bai, and P. Wu: Calphad, 2012, vol. 38, pp. 100–16.

    Article  CAS  Google Scholar 

  9. A.A. Nayeb-Hashemi and J.B. Clark: Bull. Alloy Phase Diagr., 1989, vol. 10, pp. 23–27.

    Article  CAS  Google Scholar 

  10. A. Saccone, D. Macciò, J.A.J. Robinson, F.H. Hayes, and R. Ferro: J. Alloys Compd., 2001, vol. 317–318, pp. 497–502.

    Article  Google Scholar 

  11. J. Liu, D. Bian, Y. Zheng, X. Chu, Y. Lin, M. Wang, Z. Lin, M. Li, Y. Zhang, and S. Guan: Acta Biomater., 2020, vol. 102, pp. 508–28.

    Article  CAS  PubMed  Google Scholar 

  12. Z. Liu, X.M. Liu, and Y.M. Hu: Adv. Mater. Res., 2011, vol. 322, pp. 361–64.

    Article  CAS  Google Scholar 

  13. S. Golmakaniyoon and R. Mahmudi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5228–33.

    Article  CAS  Google Scholar 

  14. A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Châtel, W.C.M. Mattens, and A.R. Miedema: Calphad, 1983, vol. 7, pp. 51–70.

    Article  CAS  Google Scholar 

  15. A. Saccone, A.M. Cardinale, S. Delfino, and R. Ferro: Intermetallics, 1993, vol. 1, pp. 151–58.

    Article  CAS  Google Scholar 

  16. Y. Ouyang, K. Liu, C. Peng, H. Chen, X. Tao, and Y. Du: Calphad, 2019, vol. 65, pp. 204–11.

    Article  CAS  Google Scholar 

  17. J. Wang, L. Fang, X. Li, C. Xu, X. He, G. Xu, X. Tao, Y. Ouyang, and Y. Du: Calphad, 2022, vol. 77, p. 102410.

    Article  CAS  Google Scholar 

  18. Y. Tan, R. Zhuang, G. Yang, X. Tao, H. Chen, Y. Ouyang, and Y. Du: J. Alloys Compd., 2021, vol. 881, p. 160581.

    Article  CAS  Google Scholar 

  19. J. Wang, L. Fang, X. Li, F. Liu, X. He, G. Xu, Y. Zhou, X. Tao, Y. Ouyang, and Y. Du: J. Alloys Compd., 2022, vol. 910, p. 164910.

    Article  CAS  Google Scholar 

  20. X. Li, L. Fang, C. Xu, Y. Zhou, Y. Liu, G. Xu, X. Tao, Y. Ouyang, and Y. Du: Calphad, 2023, vol. 81, p. 102548.

    Article  CAS  Google Scholar 

  21. J. Tezcan and K.J. Hsiao: Eng. Struct., 2008, vol. 30, pp. 2206–10.

    Article  Google Scholar 

  22. P.S. Phani, B.L. Hackett, C.C. Walker, W.C. Oliver, and G.M. Pharr: J. Mech. Phys. Solids, 2023, vol. 170, p. 105105.

    Article  Google Scholar 

  23. P.S. Phani, W.C. Oliver, and G.M. Pharr: Mater. Des., 2020, vol. 194, p. 108923.

    Article  Google Scholar 

  24. K. Wang, Q. Ma, J. Xu, T. Liao, P. Wang, R. Chen, Q. Kan, G. Cui, and L. Li: Eng. Fract. Mech., 2023, vol. 282, p. 109175.

    Article  Google Scholar 

  25. P. Sudharshan Phani, B.L. Hackett, C.C. Walker, W.C. Oliver, and G.M. Pharr: Curr. Opin. Solid State Mater. Sci., 2023, vol. 27, p. 101054.

    Article  Google Scholar 

  26. W. Chen and L. Zhang: J. Phase Equilib. Diffus., 2019, vol. 40, pp. 138–47.

    Article  CAS  Google Scholar 

  27. X. Tao, P. Yao, W. Wei, H. Chen, Y. Ouyang, Y. Du, Y. Yuan, and Q. Peng: J. Alloys Compd., 2018, vol. 752, pp. 412–19.

    Article  CAS  Google Scholar 

  28. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–79.

    Article  Google Scholar 

  29. D. Joubert and G. Kresse: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.

    Google Scholar 

  30. J. Furthmüller and G. Kresse: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.

    Article  Google Scholar 

  31. G. Kresse and J. Furthmüller: Comput. Mater. Sci., 1996, vol. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  32. J.D. Pack and H.J. Monkhorst: Phys. Rev. B, 1976, vol. 13, pp. 5188–92.

    Article  Google Scholar 

  33. K. Liu, Y. Li, and J. Wang: Vacuum, 2018, vol. 158, pp. 218–22.

    Article  CAS  Google Scholar 

  34. M. Wu, N. Si, and J. Chen: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1035–39.

    Article  CAS  Google Scholar 

  35. Z. Tang, J. Cui, M. Yu, W. Zhu, Z. Xu, J. Zeng, T. Xu, H. Yang, Y. Tan, and B. Yang: Mater. Des., 2022, vol. 224, p. 111341.

    Article  CAS  Google Scholar 

  36. C. Wagner: Acta Metall., 1969, vol. 17, pp. 99–107.

    Article  CAS  Google Scholar 

  37. J. Dai, B. Jiang, X. Li, Q. Yang, H. Dong, X. Xia, and F. Pan: J. Alloys Compd., 2015, vol. 619, pp. 411–16.

    Article  CAS  Google Scholar 

  38. W.C. Johnson and G. Martin: J. Appl. Phys., 1990, vol. 68, pp. 1252–64.

    Article  CAS  Google Scholar 

  39. M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, and P. Hedström: J. Alloys Compd., 2020, vol. 831, p. 154766.

    Article  CAS  Google Scholar 

  40. C. Ghosh: Intermetallics, 2010, vol. 18, pp. 2178–82.

    Article  CAS  Google Scholar 

  41. L. Yang, Y. Yuan, T. Chen, X. Dai, L. Zhang, D. Li, A. Tang, W. Yi, L. Zhang, and F. Pan: Intermetallics, 2021, vol. 133, p. 107171.

    Article  CAS  Google Scholar 

  42. F. Liu, L. Fang, Z. Li, Y. Tan, J. Wang, X. He, G. Xu, Y. Ouyang, and X. Tao: Vacuum, 2023, vol. 216, p. 112409.

    Article  CAS  Google Scholar 

  43. B. Liu, Y. Ren, H. Li, M. Jiang, and G. Qin: J. Alloys Compd., 2021, vol. 867, p. 159070.

    Article  CAS  Google Scholar 

  44. S. Santra and A. Paul: Scripta Mater., 2015, vol. 103, pp. 18–21.

    Article  CAS  Google Scholar 

  45. J.E. Morral: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3462–70.

    Article  Google Scholar 

  46. M.A. Dayananda: Acta Mater., 2017, vol. 129, pp. 474–81.

    Article  CAS  Google Scholar 

  47. G.M. Muralikrishna, B. Tas, N. Esakkiraja, V.A. Esin, K.C.H. Kumar, I.S. Golovin, I.V. Belova, G.E. Murch, A. Paul, and S.V. Divinski: Acta Mater., 2021, vol. 203, p. 116446.

    Article  CAS  Google Scholar 

  48. J.E. Morral, C. Jin, A. Engstr, and J. Ågren: Scripta Mater., 1996, vol. 34, pp. 1661–66.

    Article  CAS  Google Scholar 

  49. V.A. Baheti, S. Santra, S. Roy, K. Perumalsamy, S. Prasad, R. Ravi, and A. Paul: J. Alloys Compd., 2015, vol. 622, pp. 1033–40.

    Article  CAS  Google Scholar 

  50. T. Paul and A. Paul: J. Phase Equilib. Diffus., 2015, vol. 36, pp. 381–89.

    Article  CAS  Google Scholar 

  51. H. Zhou, X. Xu, G. Cheng, Z. Wang, and S. Zhang: J. Alloys Compd., 2005, vol. 386, pp. 144–46.

    Article  CAS  Google Scholar 

  52. Z.J. Zhu and A.D. Pelton: J. Alloys Compd., 2015, vol. 652, pp. 415–25.

    Article  CAS  Google Scholar 

  53. H. Shi, Y. Huang, Q. Luo, S. Gavras, R. Willumeit-Römer, and N. Hort: J. Magnes. Alloys, 2022, vol. 10, pp. 3289–3305.

    Article  CAS  Google Scholar 

  54. A. Dash and A. Paul: Acta Mater., 2023, vol. 244, p. 118547.

    Article  CAS  Google Scholar 

  55. D.W. Christianson, L. Zhu, and M.V. Manuel: Calphad, 2020, vol. 71, p. 101999.

    Article  CAS  Google Scholar 

  56. D. Liu, X. Dai, X. Wen, G. Qin, and X. Meng: Comput. Mater. Sci., 2015, vol. 106, pp. 180–87.

    Article  CAS  Google Scholar 

  57. X. Tao, Y. Ouyang, H. Liu, Y. Feng, Y. Du, and Z. Jin: Solid State Commun., 2008, vol. 148, pp. 314–18.

    Article  CAS  Google Scholar 

  58. M. Zeng, R. Wang, B. Tang, L. Peng, and W. Ding: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, p. 035018.

    Article  Google Scholar 

  59. A. Iandelli and A. Palenzona: J. Alloys Compd., 1965, vol. 9, pp. 1–6.

    CAS  Google Scholar 

  60. S. Singh, L. Lang, V. Dovale-Farelo, U. Herath, P. Tavadze, F. Coudert, and A.H. Romero: Comput. Phys. Commun., 2021, vol. 267, p. 108068.

    Article  CAS  Google Scholar 

  61. F. Sun, G. Zhang, X. Ren, M. Wang, H. Xu, Y. Fu, Y. Tang, and D. Li: Mater. Today Commun., 2020, vol. 24, p. 101101.

    Article  CAS  Google Scholar 

  62. X. Liu, Z. Liu, G. Liu, W. Wang, and J. Li: Bull. Mater. Sci., 2019, vol. 42, p. 16.

    Article  Google Scholar 

  63. Y. Ouyang, X. Tao, F. Zeng, H. Chen, Y. Du, Y. Feng, and Y. He: Physica B, 2009, vol. 404, pp. 2299–2304.

    Article  CAS  Google Scholar 

  64. G.N. Greaves, A.L. Greer, R.S. Lakes, and T. Rouxel: Nat. Mater., 2011, vol. 10, pp. 823–37.

    Article  CAS  PubMed  Google Scholar 

  65. Y. Ouyang, X. Tao, H. Chen, Y. Feng, Y. Du, and Y. Liu: Comput. Mater. Sci., 2009, vol. 47, pp. 297–301.

    Article  CAS  Google Scholar 

  66. X. Tao, Z. Guo, G. Xu, R. Wang, H. Chen, and Y. Ouyang: Comput. Mater. Sci., 2015, vol. 102, pp. 167–73.

    Article  CAS  Google Scholar 

  67. X. Tao, Y. Ouyang, H. Liu, Y. Feng, Y. Du, Y. He, and Z. Jin: J. Alloys Compd., 2011, vol. 509, pp. 6899–6907.

    Article  CAS  Google Scholar 

  68. D. Hardie: Acta Metall., 1971, vol. 19, pp. 719–23.

    Article  CAS  Google Scholar 

  69. F. Seitz, D. Turnbull, and P.W. Anderson: J. Electrochem. Soc., 1956, vol. 103, p. 181C.

    Article  Google Scholar 

  70. S.F. Pugh: Lond. Edinburgh Dublin Philos. Mag. J. Sci., 1954, vol. 45, pp. 823–843.

    Article  CAS  Google Scholar 

  71. G. Vaitheeswaran, V. Kanchana, A. Svane, and A. Delin: J. Phys. Condens. Matter, 2007, vol. 19, p. 326214.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Project Nos. 12364001 and 11964003) and the Guangxi Science and Technology Major Program (No. AA23073019), and support by Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology [Grant No. 221010-K].

Author Contributions

ZL: Conceptualization, investigation, experiment, data curation, formal analysis, writing—original draft. YT: Investigation, experiment, formal analysis. FL: Data curation, formal analysis. XT: Supervision, writing—review and editing, funding acquisition. HC: writing—review and editing. JW: Writing—review and editing, resources. YO: Supervision, writing—review and editing, funding acquisition. YD: Supervision, writing—review and editing.

Data Availability

Data will be made available on request.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifang Ouyang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tan, Y., Liu, F. et al. Diffusion Growth and Mechanical Properties of Intermetallic Compounds in Mg–Pr System. Metall Mater Trans A 55, 1576–1587 (2024). https://doi.org/10.1007/s11661-024-07350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07350-7

Navigation