Skip to main content
Log in

Effect of Coupling Low-Flow Pouring with Inoculation on the As-Cast Microstructure of 7055 Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Achieving uniform grain size in ingots is challenging in traditional direct chill (DC) casting. The thermal conditions during solidification often result in smaller grain size at the edge of the ingot compared to the center, leading to grain size inhomogeneity even in centimeter-scale samples. In this study, a low-flow pouring technique with the addition of grain refiner is employed to create similar thermal conditions from the edge to the center of the ingot during solidification, resulting in a homogeneous ingot. The grain size at the center of the prepared ingot consistently matches it at the edge. Finite element analysis confirms that low-flow pouring provides suitable thermal conditions for ensuring homogenous grains. Additionally, based on experimental results, a novel analytical model is proposed to precisely identify all active nucleation substrates. The grain size predicted by the proposed model aligns well with the experimental results, outperforming previous models. Our experimental and analytical results provide valuable guidance for the production of homogeneous ingots on an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw data will be available from the corresponding author upon reasonable request.

References

  1. M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 13–24.

    Article  CAS  Google Scholar 

  2. D.G. Eskin: Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, Boca Raton, 2008.

    Book  Google Scholar 

  3. B.S. Murty, S.A. Kori, and M. Chakraborty: Int. Mater. Rev., 2002, vol. 47, pp. 3–29.

    Article  CAS  Google Scholar 

  4. W. Kurz, D.J. Fisher, and M. Rappaz: Fundamentals of Solidification, 5th edn. (Trans Tech Publications Ltd, Switzerland, 2023), pp. 7–9.

    Book  Google Scholar 

  5. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292–304.

    Article  CAS  Google Scholar 

  6. F. Yu, X.J. Wang, T.J. Huang, and D.Y. Chao: Materials, 2021, vol. 14, p. 6705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T.E. Quested and A.L. Greer: Acta Mater., 2004, vol. 52, pp. 3859–68.

    Article  CAS  Google Scholar 

  8. M.A. Easton and D.H. StJohn: Mater. Sci. Eng. A, 2008, vol. 486, pp. 8–13.

    Article  Google Scholar 

  9. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    Article  CAS  Google Scholar 

  10. Y. Jia, S. Wang, and D. Shu: J. Alloys Compd., 2020, vol. 821, p. 153504.

    Article  CAS  Google Scholar 

  11. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers: Acta Mater., 1953, vol. 1, pp. 428–37.

    Article  CAS  Google Scholar 

  12. D. Shu, B. Sun, J. Mi, and P.S. Grant: Acta Mater., 2011, vol. 59, pp. 2135–44.

    Article  CAS  Google Scholar 

  13. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907–21.

    Article  CAS  Google Scholar 

  14. J.A. Spittle: Int. Mater. Rev., 2013, vol. 51, pp. 247–69.

    Article  Google Scholar 

  15. A. Prasad, L. Yuan, P. Lee, M. Patel, D. Qiu, M. Easton, and D. StJohn: Acta Mater., 2020, vol. 195, pp. 392–403.

    Article  CAS  Google Scholar 

  16. X. Yijiang, D. Casari, R.H. Mathiesen, and Y. Li: Acta Mater., 2018, vol. 149, pp. 312–25.

    Article  Google Scholar 

  17. A.L. Greer: J. Chem. Phys., 2016, vol. 145, p. 211704.

    Article  CAS  PubMed  Google Scholar 

  18. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche: Adv. Eng. Mater., 2003, vol. 5, pp. 81–91.

    Article  CAS  Google Scholar 

  19. M. Zhang, P. Kelly, M. Easton, and J. Taylor: Acta Mater., 2005, vol. 53, pp. 1427–38.

    Article  CAS  Google Scholar 

  20. D. Qiang and Y. Li: Acta Mater., 2014, vol. 71, pp. 380–89.

    Article  Google Scholar 

  21. M. Sun, M.A. Easton, D.H. StJohn, W. Guohua, T.B. Abbott, and W. Ding: Adv. Eng. Mater., 2013, vol. 15, pp. 373–78.

    Article  CAS  Google Scholar 

  22. Y. Han, K. Li, J. Wang, D. Shu, and B. Sun: Mater. Sci. Eng. A, 2005, vol. 405, pp. 306–12.

    Article  Google Scholar 

  23. Y. Han, Da. Shu, J. Wang, and B. Sun: Mater. Sci. Eng. A, 2006, vol. 430, pp. 326–31.

    Article  Google Scholar 

  24. M. Qian, P. Cao, M.A. Easton, S.D. McDonald, and D.H. StJohn: Acta Mater., 2010, vol. 58, pp. 3262–70.

    Article  CAS  Google Scholar 

  25. I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229–37.

    Article  CAS  Google Scholar 

  26. P. Galenko and S. Sobolev: Phys. Rev. E, 1997, vol. 55, pp. 343–52.

    Article  CAS  Google Scholar 

  27. K. Eckler, R.F. Cochrane, D.M. Herlach, B. Feuerbacher, and M. Jurisch: Phys. Rev. B, 1992, vol. 45, pp. 5019–22.

    Article  CAS  Google Scholar 

  28. J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.

    Article  CAS  Google Scholar 

  29. L. Yuan and P.D. Lee: Model. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 055008.

    Article  Google Scholar 

  30. R.C. Atwood and P.D. Lee: Acta Mater., 2003, vol. 51, pp. 5447–66.

    Article  CAS  Google Scholar 

  31. A. Prasad, L. Yuan, P.D. Lee, and D.H. StJohn: Acta Mater., 2013, vol. 61, pp. 5914–27.

    Article  CAS  Google Scholar 

  32. T.E. Quested and A.L. Greer: Acta Mater., 2005, vol. 53, pp. 4643–53.

    Article  CAS  Google Scholar 

  33. Xu. Yijiang, D. Casari, Du. Qiang, R.H. Mathiesen, L. Arnberg, and Y. Li: Acta Mater., 2017, vol. 140, pp. 224–39.

    Article  Google Scholar 

  34. W. Kurz, M. Rappaz, and R. Trivedi: Int. Mater. Rev., 2020, vol. 66, pp. 30–76.

    Article  Google Scholar 

  35. W. Kurz, C. Bezençon, and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.

    Article  CAS  Google Scholar 

  36. M. Rettenmayr: Int. Mater. Rev., 2013, vol. 54, pp. 1–7.

    Article  Google Scholar 

  37. F.C. Robles Hernandez, M.B. Djurdjevic, W.T. Kierkus, and J.H. Sokolowski: Mater. Sci. Eng.: A, 2005, vol. 396, pp. 271–76.

    Article  Google Scholar 

  38. A.M. Mitrašinović and F.C. Robles Hernández: Mater. Sci. Eng.: A, 2012, vol. 540, pp. 63–69.

    Article  Google Scholar 

  39. M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, and M.S. Dargusch: Acta Mater., 2019, vol. 168, pp. 261–74.

    Article  CAS  Google Scholar 

  40. D.H. StJohn, M.A. Easton, and M. Qian: in 13th Int. Conf. Alum. Alloys (ICAA), Carnegie Mellon University, Pittsburgh, PA, Wiley, 2012, pp. 1419–24.

Download references

Acknowledgments

This work is financially supported by the National Key Research and Development Program of China (No. 2023YFB3406800) and National Natural Science Foundation of China (Nos. 52273230 and 51731007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Han.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 286 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Han, Y., Lu, S. et al. Effect of Coupling Low-Flow Pouring with Inoculation on the As-Cast Microstructure of 7055 Alloys. Metall Mater Trans A 55, 1564–1575 (2024). https://doi.org/10.1007/s11661-024-07344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07344-5

Navigation