Skip to main content
Log in

Solid-State Joining of Dissimilar Single Crystal and Polycrystalline Ni-Based Superalloys Using Field-Assisted Sintering Technology

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Field assisted sintering technology (FAST) was studied as a method to solid-state join a single crystal Ni-based superalloy (PW1429) to the same single crystal superalloy (PWA1429), a different single crystal superalloy (PWA1480), and a polycrystalline superalloy (CM247LC), without localized melting unlike friction welding. Such a joining method is desired to repair cracked gas turbine blades. The joined interphase was void-free; the \(\gamma^{\prime}\) precipitation morphology varied along the interphase thickness, to bridge between the different chemical compositions of the two parts. Room temperature tensile testing indicated that bonding strengths are comparable with those of the parent materials. Fracture occurred at the interface when two single crystal components are joined, while fracture occurred away from the interface when a single crystal PWA1429 and a polycrystalline part are joined. The FAST-joined parts were also tensile tested at 700 \(^{\circ }\)C, after a double-aging heat treatment to recover the desired cuboidal \(\gamma^{\prime}\) precipitate shape. The joined PWA1429-CM247LC samples and PWA1429-PWA1429 samples showed moderate strength degradation at high temperature from the values measured at room temperature, while the joined PWA1429-PWA1480 samples exhibited large degradation. These results indicate the influence of crystalline mismatch. Further interphase improvement can be pursued through a post annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, pp. 171–73.

    Book  Google Scholar 

  2. M.J. van Enkhuizen, C. Dresbach, S. Reh, and S. Kuntzagk: ASME Turbo Expo: Power Land Sea Air, 2017, vol. 50923, p. 002.

    Google Scholar 

  3. I. Alfred, M. Nicolaus, J. Hermsdorf, S. Kaierle, K. Mohwald, H.J. Maier, and V. Wesling: Procedia CIRP, 2018, vol. 74, pp. 214–17.

    Article  Google Scholar 

  4. R. Cortés, E.R. Barragán, V.H. López, R.R. Ambriz, and D. Jaramillo: Int. J. Adv. Manuf. Technol., 2018, vol. 94, pp. 3949–61.

    Article  Google Scholar 

  5. M. Hernandez, R.R. Ambriz, R. Cortès, C.M. Gómora, G. Plascencia, and D. Jaramillo: Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 579–87.

    Article  CAS  Google Scholar 

  6. M. Pang, G. Yu, H.H. Wang, and C.Y. Zheng: J. Mater. Process. Technol., 2008, vol. 207, pp. 271–75.

    Article  CAS  Google Scholar 

  7. B. Arulmurugan and M. Manikandan: J. Mater. Sci. Eng. A, 2017, vol. 691, pp. 126–40.

    Article  CAS  Google Scholar 

  8. J.W. Park, J.M. Vitek, S.S. Babu, and S.A. David: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 472–82.

    Article  CAS  Google Scholar 

  9. T.D. Anderson, J.N. DuPont, and T. DebRoy: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 181–93.

    Article  ADS  CAS  Google Scholar 

  10. S.A. David, J.M. Vitek, S.S. Babu, L.A. Boatner, and R.W. Reed: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 79–88.

    Article  CAS  Google Scholar 

  11. O.N. Senkov, D.W. Mahaffey, and S.L. Semiatin: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5428–44.

    Article  ADS  Google Scholar 

  12. T. Ma, M. Yan, X. Yang, W. Li, and Y.J. Chao: Mater. Des., 2015, vol. 85, pp. 613–17.

    Article  CAS  Google Scholar 

  13. Y. Peng, J. Li, X. Peng, S. Li, J. Xiong, and J. Shi: J. Mater. Res. Technol., 2020, vol. 9, pp. 16317–28.

    Article  CAS  Google Scholar 

  14. L. Yuan, J. Xiong, Y. Peng, J. Shi, and J. Li: J. Mater. Sci. Eng. A, 2020, vol. 772, p. 138670.

    Article  CAS  Google Scholar 

  15. M. Karadge, M. Preuss, P.J. Withers, and S. Bray: J. Mater. Sci., 2008, vol. 491, pp. 446–53.

    Google Scholar 

  16. A.R. Khalikov, E.A. Sharapov, V.A. Valitov, E.V. Galieva, E.A. Korznikova, and S.V. Dmitriev: Comput. Sci., 2020, vol. 8, p. 102.

    CAS  Google Scholar 

  17. Y. Shajari, Z.S. Seyedraoufi, A. Alizadeh, S.H. Razavi, M. Porhonar, and K. Mirzavand: Mater. Res. Express, 2019, vol. 6, p. 126571.

    Article  ADS  CAS  Google Scholar 

  18. S.Y. Lu and Z. Zhang: Rare Met. (Beijing, China), 2023, vol. 42, pp. 4264–70.

    Google Scholar 

  19. K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, and X.F. Sun: J. Mater. Sci. Technol. (Shenyang, China), 2021, vol. 60, pp. 206–15.

    Article  CAS  Google Scholar 

  20. J. Kuipers, K. Wiens, and B. Ruggiero: ASME Turbo Expo: Power Land Sea Air, 2017, vol. 50916, p. V006T24A009.

    Google Scholar 

  21. R. Vilar and A. Almeida: J. Laser Appl., 2015, vol. 27, p. S17004.

    Article  Google Scholar 

  22. B. Rottwinkel, L. Schweitzer, C. Noelke, S. Kaierle, and V. Wesling: Phys. Procedia, 2014, vol. 56, pp. 301–08.

    Article  ADS  Google Scholar 

  23. C.I. Lin, N. Yamamoto, D.S. King, and J. Singh: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 2149–54.

    Article  ADS  Google Scholar 

  24. C.I. Lin, S.J. Niuman, A.K. Kulkarni, D.S. King, J. Singh, and N. Yamamoto: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1353–66.

    Article  ADS  Google Scholar 

  25. S. Lister, O.L. Blanch, D.S. Fernandez, J. Pope, G.J. Baxter, S. Bray, and M. Jackson: Metall. Mater. Trans. A, 2023, vol. 54A, pp. 4396–408.

    Article  ADS  Google Scholar 

  26. O. Levano Blanch, D. Lunt, G.J. Baxter, and M. Jackson: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 3064–82.

    Article  ADS  Google Scholar 

  27. Alloy Calculator (Advanced Alloy Services Limited, South Yorkshire, UK, 2023), https://www.advancedalloys.co.uk/alloy-calculator/. Accessed 31 May 2023.

  28. B.C. Wilson and G.E. Fuchs: Superalloys 2008, Proc. Int. Symp., 11th, 2008, pp. 149–58.

  29. ASM Alloy Center Database (ASM International, Almere, 2002), CM 247 LC (Directionally Solidified Nickel-Base Turbine Blade Alloy), https://matdata.asminternational.org/, Accessed 25 Jan 2021.

  30. I.M. Makena, M.B. Shongwe, M.M. Ramakokovhu, and M.L. Lethabane: World Congr. Eng., 2017, vol. 2, pp. 922–27.

    Google Scholar 

  31. S. Amaral, T. Verstraete, R. van den Braembussche, and T. Arts: J. Turbomach., 2010, vol. 132, p. 021013.

    Article  Google Scholar 

  32. M.R. Reyhani, M. Alizadeh, A. Fathi, and H. Khaledi: Propuls. Power Res., 2013, vol. 2, pp. 148–61.

    Article  Google Scholar 

  33. S. Hada, K. Tsukagoshi, J. Masada, and E. Ito: Tech. Rev. Mitsubishi Heavy Ind., 2012, vol. 49, p. 18.

    Google Scholar 

  34. S. Hwang, C. Son, D. Seo, D.H. Rhee, and B. Cha: Appl. Therm. Eng., 2016, vol. 99, pp. 765–75.

    Article  Google Scholar 

  35. J.P. Monchoux: Spark Plasma Sintering of Materials: Advances in Processing and Applications, Springer, New York, NY, 2019, pp. 93–115.

    Book  Google Scholar 

  36. J. Coakley, H. Basoalto, and D. Dye: Acta Mater., 2010, vol. 58, pp. 4019–28.

    Article  ADS  CAS  Google Scholar 

  37. J. Yang, S.Z. Liu, X.F. Wang, C.B. Ji, and J.W. Zou: Mater. Res. Innov., 2014, vol. 18, pp. S4–429.

    Article  Google Scholar 

  38. S. Suzuki, M. Sakaguchi, and H. Inoue: J. Mater. Sci. Eng. A, 2018, vol. 724, pp. 559–65.

    Article  CAS  Google Scholar 

  39. C. Lin: Sintering and Solid-State Joining of Nickel-based Superalloys Using Field-Assisted Sintering Technology, Ph.D. Thesis, The Pennsylvania State University, 2021.

  40. D.M. Shah and D.N. Duhl: Superalloys Proc. Int. Symp., 5th, 1984, pp. 105–14.

  41. W.W. Milligan and S.D. Antolovich: Metall. Trans. A, 1987, vol. 18A, pp. 85–95.

    Article  ADS  CAS  Google Scholar 

  42. J.S. Tiley, D.W. Mahaffey, T. Alam, T. Rojhirunsakool, O. Senkov, T. Parthasarthy, and R. Banerjee: J. Mater. Sci. Eng. A, 2016, vol. 662, pp. 26–35.

    Article  CAS  Google Scholar 

  43. D.N. Duhl and W.E. Olson: U.S. Patent No. 4,209,348. U.S. Patent and Trademark Office, Washington, D.C., 24 June 1980.

  44. V.D. Divya, R. Muñoz-Moreno, O.M.D.M. Messé, J.S. Barnard, S. Baker, T. Illston, and H.J. Stone: Mater Charact, 2016, vol. 114, pp. 62–74.

    Article  CAS  Google Scholar 

  45. T. Kalfhaus, H. Schaar, F. Thaler, B. Ruttert, D. Sebold, J. Frenzel, I. Steinbach, W. Theisen, O. Guillon, T.W. Clyne, and R. Vassen: Surf. Coat. Technol., 2021, vol. 405, p. 126494.

    Article  CAS  Google Scholar 

  46. O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, and C. Woodward: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1173–84.

    Article  CAS  Google Scholar 

  47. K. Chen, R. Huang, Y. Li, S. Lin, W. Zhu, N. Tamura, J. Li, Z.W. Shan, and E. Ma: Adv. Mater., 2020, vol. 32, p. 1907164.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Government under Agreement No. W911W6-17-2-0003, through the Penn State Vertical Lift Research Center of Excellence. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Aviation Development Directorate or the U.S Government. This work was also partially supported by the Applied Research Laboratory (ARL) at the Pennsylvania State University (PSU). The authors would like to thank material donations from the Air Force Research Laboratory and Pratt & Whitney. The authors also would like to thank Petr Kolonin, Kevin Busko, and Scott Pistner (ARL, PSU) for their technical assistance in FAST sintering and solid-state joining and for Don Stiver (ARL, PSU) for his assistance in die design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namiko Yamamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Singh, J., Hogan, M. et al. Solid-State Joining of Dissimilar Single Crystal and Polycrystalline Ni-Based Superalloys Using Field-Assisted Sintering Technology. Metall Mater Trans A 55, 1271–1283 (2024). https://doi.org/10.1007/s11661-024-07334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07334-7

Navigation