Skip to main content
Log in

Origins of Strength, Strain Hardening, and Fracture in B2 Tailored Fe–0.8C–15Mn–10Al–5Ni Wt Pct Austenitic Low Density Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low density steel is a future hope for automotive industries with high strength–ductility, concerning passenger safety. To investigate the microstructural contributions, an as-cast Fe–0.8C–15Mn–10Al–5Ni wt pct alloy is fabricated by hot rolling, cold rolling, and thereafter annealing at 900 °C. The phase constituents are austenite (γ) as the matrix, B2 as the second phase, and B2 stringer bands originating from heat-treated deformed δ-ferrite in this high-Al-alloyed steel. The work analyzes the effective contribution of intra-granular B2 to yield strength (YS) through precipitation strengthening. The strain-hardening mechanism is rather complex. One group believes that strain incompatibility between softer γ and hard B2 localizes geometrically necessary dislocations at the phase interface for high-strain hardening in this alloy by back stress; whereas, the other considers planar glide with a restricted cross-slip behind the strain-hardening mechanism. The present work successfully resolves the debate by stating that strain hardening is a matrix’s characteristic, dominated by lattice friction stress and dislocation strengthening. The lattice friction of solute-enriched γ-matrix reduces the width of dislocation core merely to an interplanar spacing. Thereby, a difficulty in dislocation movement during tensile deformation results in extraordinary strain hardening for this steel through a constrained planar glide. The static recrystallization and polygonization of heat-treated cold-rolled B2 stringer band induces intergranular micro-cracks, and thereafter its annihilation as a stress concentration site for tensile failure without necking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G.S. Cole and A.M. Sherman: Mater. Charact., 1995, vol. 35, pp. 3–9.

    Article  CAS  Google Scholar 

  2. G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, pp. 627–33.

    Article  CAS  Google Scholar 

  3. S. Chen, R. Rana, A. Haldar, and R.K. Ray: Prog. Mater Sci., 2017, vol. 89, pp. 345–91.

    Article  CAS  Google Scholar 

  4. M. Sinha, S. Ahad, A.K. Chaudhry, and S. Ghosh: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 809–17.

    Article  Google Scholar 

  5. S.H. Kim, H. Kim, and N.J. Kim: Nature, 2015, vol. 518, pp. 77–79.

    Article  CAS  Google Scholar 

  6. I. Gutierrez-Urrutia and D. Raabe: Mater. Sci. Technol., 2014, vol. 30, pp. 1099–1104.

    Article  CAS  Google Scholar 

  7. B. Mishra, R. Sarkar, V. Singh, A. Mukhopadhyay, R.T. Mathew, V. Madhu, and M.J.N.V. Prasad: Materialia, 2021, vol. 20, 101198.

    Article  CAS  Google Scholar 

  8. H. Kim: Scripta Mater., 2019, vol. 160, pp. 29–32.

    Article  CAS  Google Scholar 

  9. G. Park, C.H. Nam, A. Zargaran, and N.J. Kim: Scripta Mater., 2019, vol. 165, pp. 68–72.

    Article  CAS  Google Scholar 

  10. B. Laura and D.V. Aken: JOM, 2014, vol. 66, pp. 1770–84.

    Article  Google Scholar 

  11. W. Korter and W. Ton: Arch. Eisenhuettenwes, 1933, vol. 365, p. 7.

    Google Scholar 

  12. J.L. Ham and J.R. Carin: Product. Eng., 1958, vol. 29, p. 51.

    Google Scholar 

  13. U. Prakash, R.A. Buckley, H. Jones, and C.M. Sellars: ISIJ Int., 1991, vol. 31, pp. 111–13.

    Article  Google Scholar 

  14. I. Baker and P.R. Munroe: Int. Mater. Rev., 1997, vol. 42, pp. 181–205.

    Article  CAS  Google Scholar 

  15. K. Choi, C.H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.T. Park, and N.J. Kim: Scripta Mater., 2010, vol. 63, pp. 1028–31.

    Article  CAS  Google Scholar 

  16. Z.Q. Wu, H. Ding, X.H. An, D. Han, and X.Z. Liao: Mater. Sci. Eng. A, 2015, vol. 639, pp. 187–91.

    Article  CAS  Google Scholar 

  17. M. Piston, L. Bartlett, K.R. Limmer, and D.M. Field: Metals, 2020, vol. 10, pp. 1–4.

    Article  Google Scholar 

  18. A. Rahnama, H. Kotadia, and S. Sridhar: Acta Mater., 2017, vol. 132, pp. 627–43.

    Article  CAS  Google Scholar 

  19. J.H. Hwang, T.T.T. Trang, O. Lee, G. Park, A. Zargaran, and N.J. Kim: Acta Mater., 2020, vol. 191, pp. 1–2.

    Article  CAS  Google Scholar 

  20. A. Rahanama, H. Kotadia, S. Clark, V. Janik, and S. Sridhar: Nat. Sci. Rep., 2018, vol. 8, pp. 1–2.

    Google Scholar 

  21. M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, and X.L. Wu: Acta Mater., 2016, vol. 109, pp. 213–22.

    Article  CAS  Google Scholar 

  22. B. Mishra, V. Singh, R. Sarkar, A. Mukhopadhyay, K. Gopinath, V. Madhu, and M.J.N.V. Prasad: Mater. Sci. Eng. A, 2022, vol. 842, 143095.

    Article  CAS  Google Scholar 

  23. D. Tourret, M.M. Francois, and A.J. Clarke: Comput. Mater. Sci., 2019, vol. 162, pp. 206–27.

    Article  CAS  Google Scholar 

  24. B.G. Zhang, X.M. Zhang, and H.T. Liu: Mater. Charact., 2021, vol. 178, 111291.

    Article  CAS  Google Scholar 

  25. W. Gąsior, A. Dębski, and Z. Moser: Intermetallics, 2012, vol. 24, pp. 99–105.

  26. C. Colinet, A. Bessoud, and A. Pasturel: J. Phys.: Condens. Matter, 1989, vol. 1, pp. 5837–45.

    CAS  Google Scholar 

  27. M.J. Yao, E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, I. Bleskov, T. Hickel, M. Lipinska-Chwalek, P. Shanthraj, C. Scheu, S. Zaefferer, B. Gault, and D. Raabe: Acta Mater., 2017, vol. 140, pp. 258–73.

    Article  CAS  Google Scholar 

  28. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992.

    Book  Google Scholar 

  29. G.E. Dieter: Mechanical Metallurgy, 3rd ed. Mc Graw-Hill, New York, 1986.

    Google Scholar 

  30. N. Bhowmik, S. Ghosh, S. Mandal, A. Haldar, and P.P. Chattopadhyay: CALPHAD, 2022, vol. 77, 102425.

    Article  CAS  Google Scholar 

  31. X.G. Wang, C.H. Liu, B.B. He, C. Jiang, and M.X. Huang: Mater. Sci. Eng. A, 2019, vol. 761, 138050.

    Article  CAS  Google Scholar 

  32. B. Sun, Y. Ma, N. Vanderesse, R.S. Varanasi, W. Song, P. Bocher, D. Ponge, and D. Raabe: Acta Mater., 2019, vol. 178, pp. 10–25.

    Article  CAS  Google Scholar 

  33. S.D. Antolovich and R.W. Armstrong: Prog. Mater Sci., 2014, vol. 59, pp. 1–60.

    Article  Google Scholar 

  34. B.C. De Cooman, Y. Estrin, and S. Kyu: Acta Mater., 2018, vol. 142, pp. 283–362.

    Article  Google Scholar 

  35. K.M. Rahman, V.A. Vorontsov, and D. Dye: Acta Mater., 2015, vol. 89, pp. 247–57.

    Article  CAS  Google Scholar 

  36. S. Hu, Z. Zheng, W. Yang, and H. Yang: Steel Res. Int., 2022, vol. 93, pp. 1–3.

    Google Scholar 

  37. E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, and D. Raabe: Acta Mater., 2016, vol. 116, pp. 188–99.

    Article  CAS  Google Scholar 

  38. I. Gutierrez-Urrutia and D. Raabe: Mater. Sci. Technol. (U.K.), 2014, vol. 30, pp. 1099–104.

    Article  CAS  Google Scholar 

  39. P.P. Singh, S. Ghosh, and S. Mula: Mater. Sci. Eng. A, 2022, vol. 859, 144210.

    Article  CAS  Google Scholar 

  40. B. Clausen, T. Lorentzen, and T. Leffers: Acta Mater., 1998, vol. 46, pp. 3087–98.

    Article  CAS  Google Scholar 

  41. M. Sinha, B. Syed, A. Karmakar, and S. Ghosh: Mater. Sci. Eng. A, 2020, vol. 787, 139519.

    Article  CAS  Google Scholar 

  42. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  43. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig: Acta Mater., 2015, vol. 100, pp. 178–90.

    Article  CAS  Google Scholar 

  44. X.L. Liu, Q.Q. Xue, W. Wang, L.L. Zhou, P. Jiang, H.S. Ma, F.P. Yuan, Y.G. Wei, and X.L. Wu: Materialia, 2019, vol. 7, 100376.

    Article  CAS  Google Scholar 

  45. O. Bouaziz, S. Allain, and C. Scott: Scripta Mater., 2008, vol. 58, pp. 484–87.

    Article  CAS  Google Scholar 

  46. K. Tanaka and T. Mori: Acta Metall., 1970, vol. 18, pp. 931–41.

    Article  CAS  Google Scholar 

  47. S. Sarkar, Y. Gao, S. Huang, S. Bhattacharya, S. Patil, and R. Oruganti: Crystals, 2020, vol. 10, p. 306.

    Article  CAS  Google Scholar 

  48. Y.Y. Zhao and T.G. Nieh: Intermetallics, 2017, vol. 86, pp. 45–50.

    Article  CAS  Google Scholar 

  49. W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K. Liaw, and T. Egami: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 1994–97.

    Article  Google Scholar 

  50. C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Y. Ren, Y.C. Chou, and P.K. Liaw: Adv. Mater., 2020, vol. 32, pp. 1–9.

    Google Scholar 

  51. G.E. Nevill: Effect of vibrations on the yield strength of a low carbon steel, Master’s thesis, The RICE Institute, Houstan, TX, 1957.

  52. D. Roylance: The dislocation basis of yield and creep, https://web.mit.edu/course/3/3.11/www/modules/dn.pdf.

  53. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–904.

    CAS  Google Scholar 

  54. A.K. Patra, C.N. Athreya, S. Mandal, K.C. Hari Kumar, and V. Subramanya Sarma: Mater. Sci. Eng. A, 2021, vol. 810, pp. 140756–57.

    Article  CAS  Google Scholar 

  55. J. Nakano and P.J. Jacques: CALPHAD, 2010, vol. 34, pp. 167–75.

    Article  CAS  Google Scholar 

  56. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3076–90.

    Article  Google Scholar 

  57. P.P. Singh, S. Mula, A. Malakar, and S. Ghosh: Mater. Today Commun., 2022, vol. 31, 103519.

    Article  CAS  Google Scholar 

  58. M. Sinha, A. Karmakar, B. Syed, and S. Ghosh: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 3435–46.

    Article  Google Scholar 

  59. T. Imao, S. Hiroshi, T. Tomo, and O. Chiaki: Thermomechanical Processing of High-Strength Low-Alloy Steels, 1st ed. Butterworth, London, 1988.

    Google Scholar 

  60. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to G. K. Dey, B. Mishra, P. C. Chakraborti and P. P. Chattapadhyay for discussions. The Department of Science and Technology, Government of India is acknowledged for the financial support (File Number CRG/2018/002432).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhan Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhan, S., Rawat, P., Das, S. et al. Origins of Strength, Strain Hardening, and Fracture in B2 Tailored Fe–0.8C–15Mn–10Al–5Ni Wt Pct Austenitic Low Density Steel. Metall Mater Trans A 54, 4080–4099 (2023). https://doi.org/10.1007/s11661-023-07155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07155-0

Navigation