Skip to main content
Log in

Growth Kinetics, and Wear and Corrosion Properties of TiC Coatings on Pure Titanium by Carburizing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The carburized layer was fabricated on the surface of TA2 pure titanium by pack carburizing. The effects of carburizing agent, carburizing temperature and carburizing time on the thickness of the carburized layer were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The experimental results showed that the carburized layer is composed of TiC phase. After carburized at 1100 °C for 15 hours, the TiC layer has the thickest thickness of 423 ± 0.4 μm. Besides, the growth mechanism and kinetics of the TiC layer were explored. The activation energy of C in the TiC layer during pack carburizing is 87.220 kJ/mol. The wear and corrosion properties of TiC layer were characterized by microhardness, wear tests, and electrochemical experiments. The highest hardness of TiC layer is 1036HV, and the hardness decreases gradually from the TiC layer to matrix. The wear type is abrasive wear with the exfoliation of the TiC layer. Finally, the corrosion properties of the carburized sample were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.C. Sánchez-López, S. Dominguez-Meister, T.C. Rojas, M. Colasuonno, M. Bazzan, and A. Patelli: Appl. Surf. Sci., 2018, vol. 440, pp. 458–66.

    Article  Google Scholar 

  2. G.Q. Xu and X.K. Shen: Surf. Coat. Technol., 2019, vol. 364, pp. 180–96.

    Article  CAS  Google Scholar 

  3. X.Y. Zhang, S. Pfeiffer, P. Rutkowski, M. Makowska, D. Kata, J.L. Yang, and T. Graule: Appl. Surf. Sci., 2020, vol. 520, 146304.

    Article  CAS  Google Scholar 

  4. B. Callegari, J.P. Oliveira, R.S. Coelho, P.P. Brito, N. Schell, F.A. Soldera, F. Mücklich, M.I. Sadik, J.L. García, and H.C. Pinto: Mater. Charact., 2020, vol. 162, 110180.

    Article  CAS  Google Scholar 

  5. C.A.F. Salvador, E.L. Maia, F.H. Costa, J.D. Escobar, and J.P. Oliveira: Sci. Data, 2022, vol. 9, p. 188.

    Article  CAS  Google Scholar 

  6. B. Callegari, J.P. Oliveira, K. Aristizabal, R.S. Coelho, P.P. Brito, L. Wu, N. Schell, F.A. Soldera, F. Mücklich, and H.C. Pinto: Mater. Charact., 2020, vol. 165, 110400.

    Article  CAS  Google Scholar 

  7. Y. Liu, R. Sun, W. Niu, T. Zhang, and Y. Lei: Opt Laser. Eng., 2019, vol. 120, pp. 84–94.

    Article  Google Scholar 

  8. F. Ma, J. Zhou, P. Liu, W. Li, X. Liu, D. Pan, W. Lu, D. Zhang, L. Wu, and X. Wei: Mater. Char., 2017, vol. 127, pp. 27–34.

    Article  CAS  Google Scholar 

  9. H.Z. Niu, H.R. Zhang, Q.Q. Sun, and D.L. Zhang: Mater. Sci. Eng. A, 2019, vol. 754, pp. 361–69.

    Article  CAS  Google Scholar 

  10. Y.P. Lu, D.Y. Qu, Y.H. Duan, and M.J. Peng: Ceram. Int., 2022, vol. 48, pp. 5646–6565.

    Article  CAS  Google Scholar 

  11. Y.H. Duan, D. Liu, B.L. He, L.S. Ma, Y.Y. Hu, and X.Q. Li: Philos. Magn. Lett., 2018, vol. 98, pp. 521–26.

    Article  CAS  Google Scholar 

  12. Y.P. Lu, D.Y. Qu, Y.H. Duan, and M.J. Peng: Ceram. Int., 2021, vol. 47, pp. 25142–46.

    Article  CAS  Google Scholar 

  13. S. Barril, S. Mischler, and D. Landolt: Tribol. Int., 2001, vol. 34, pp. 599–608.

    Article  CAS  Google Scholar 

  14. Y.T. Zhao, Z.Q. Fan, Q.Y. Tan, Y. Yin, M.Y. Lu, and H. Huang: Tribol. Int., 2021, vol. 155, 106758.

    Article  CAS  Google Scholar 

  15. J. Chen, Z.L. Zhang, G.J. Yang, Z.H. Fang, Z.F. Yang, Z. Li, and G.Y. He: Appl. Surf. Sci., 2020, vol. 513, 145457.

    Article  CAS  Google Scholar 

  16. Z.Y. Zhao, P.F. Hui, T. Wang, X. Wang, Y.H. Xu, L.S. Zhong, and M.X. Zhao: J. Alloys Compd., 2018, vol. 745, pp. 637–43.

    Article  CAS  Google Scholar 

  17. T.Y. Zhang, J. Wang, Z.Z. Pan, and Q. Tao: Mater. Sci. Eng. A, 2022, vol. 832, 142452.

    Article  CAS  Google Scholar 

  18. B. Jamieson, C. Bilin, X. Xie, R. Yang, D.V. Jimmy, K.L. Peter, and J.Z. Steven: Mater. Sci. Eng. A, 2019, vol. 753, pp. 135–45.

    Article  Google Scholar 

  19. Z.L. Li, M.M. Wei, K. Xiao, Z.H. Bai, W. Xue, C.F. Dong, D. Wei, and X.G. Li: Ceram. Int., 2019, vol. 45, pp. 115–21.

    Article  Google Scholar 

  20. J. Lee, D. Lee, M.H. Song, W. Rhee, H.J. Ryu, and S.H. Hong: J. Mater. Sci. Technol., 2018, vol. 34, pp. 1397–1404.

    Article  CAS  Google Scholar 

  21. Y.T. Li, K.M. Wang, H.G. Fu, X.Y. Guo, and J. Lin: Appl. Surf. Sci., 2022, vol. 585, 152703.

    Article  CAS  Google Scholar 

  22. Y. Yang, M.F. Yan, and Y.X. Zhang: Appl. Surf. Sci., 2019, vol. 479, pp. 482–88.

    Article  CAS  Google Scholar 

  23. H.W. Zhao, J.H. Li, S.B. Guo, D.D. Fan, G.H. Liu, and J.T. Li: Ceram. Int., 2017, vol. 43, pp. 6904–09.

    Article  CAS  Google Scholar 

  24. X. He, R.G. Song, and D.J. Kong: Opt. Laser Technol., 2013, vol. 219, pp. 339–48.

    Google Scholar 

  25. M.S. Afarani, S. Khorshahian, and M. Sharifitaba: Surf. Coat. Technol., 2013, vol. 219, pp. 94–100.

    Article  Google Scholar 

  26. L. Yong, H. Jiang, C. Gang, and H. Liu: J. Bionic Eng., 2011, vol. 08, pp. 86–89.

    Article  Google Scholar 

  27. C.J. Liao, J.S. Yang, Y.H. He, and X.Z. Ming: J. Alloys Compd., 2015, vol. 619, pp. 221–27.

    Article  CAS  Google Scholar 

  28. S. Aich and K.S.R. Chandran: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3489–98.

    Article  CAS  Google Scholar 

  29. L.S. Ma, Y.H. Duan, and P. Li: J. Mater. Eng. Perform., 2017, vol. 26, pp. 4544–55.

    Article  CAS  Google Scholar 

  30. G. Kara and G. Purcek: Surf. Eng., 2018, vol. 35, pp. 611–17.

    Article  Google Scholar 

  31. P. Li, D. Liu, W. Bao, L. Ma, and Y. Duan: Ceram. Int., 2018, vol. 44, pp. 18429–37.

    Article  CAS  Google Scholar 

  32. T. Hayashi, K. Matsuura, and M. Ohno: Mater. Trans., 2013, vol. 54, pp. 2098–2101.

    Article  CAS  Google Scholar 

  33. K. Takato and N. Akio: Mater. Trans., 2019, vol. 60, pp. 2387–91.

    Article  Google Scholar 

  34. Y. Duan, X. Wang, D. Liu, W. Bao, P. Li, and M. Peng: Ceram. Int., 2020, vol. 46, pp. 16380–87.

    Article  CAS  Google Scholar 

  35. B.B. Khina, B. Formanek, and I. Solpan: Physica B, 2005, vol. 355, pp. 14–31.

    Article  CAS  Google Scholar 

  36. F. Li, X. Yi, J. Zhang, Z. Fan, D. Gong, and Z. Xi: Acta Metall. Sin., 2010, vol. 23, pp. 293–300.

    CAS  Google Scholar 

  37. A.G. Vodop’yanov, G.N. Kozhevnikov, and S.V. Baranov: Russ. Chem. Rev., 1988, vol. 57, p. 810.

    Article  Google Scholar 

  38. X. Wang, Z.H. Zhang, Y.Z. Men, X.J. Li, Y.H. Liang, and L.Q. Ren: Opt. Laser Technol., 2020, vol. 126, 106136.

    Article  CAS  Google Scholar 

  39. V. Chakkravarthy, J.P. Oliveira, A. Mahomed, N. Yu, P. Manojkumar, M. Lakshmanan, L. Zhang, S. Jerome, T. Ram Prabhu, and R.L. Narayan: Vacuum, 2023, vol. 210, 111872.

    Article  CAS  Google Scholar 

  40. Z.Z. Zhang, Y.B. Chen, Y. Zhang, K.W. Gao, L.L. Zuo, Y.S. Qi, and Y. Wei: J. Alloys Compd., 2017, vol. 704, pp. 260–68.

    Article  CAS  Google Scholar 

  41. J. Ke, X.B. Liu, M. Wang, J. Liang, Y.S. Luo, and D.Q. Chen: J. Mater. Res. Technol., 2020, vol. 9, pp. 6397–6408.

    Article  CAS  Google Scholar 

  42. X.Y. Wang, D.Y. Qu, Y.H. Duan, and M.J. Peng: Ceram. Int., 2022, vol. 48, pp. 12038–47.

    Article  CAS  Google Scholar 

  43. H. Dhiflaoui, K. Khlifi, N. Barhoumi, and A.B.C. Larbi: J. Mater. Res. Technol., 2020, vol. 9, pp. 5293–5303.

    Article  CAS  Google Scholar 

  44. J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, and L.O.S. Bulhões: J. Electroanal. Chem., 1998, vol. 452, pp. 229–34.

    Article  CAS  Google Scholar 

  45. L. Cheng, R. Jin, D.C. Jiang, J. Zhuang, X.B. Liao, and Q.Q. Zheng: Anal. Chem., 2021, vol. 93, pp. 16401–08.

    Article  CAS  Google Scholar 

  46. R. Udhayan and D.P. Bhatt: J. Power Sources, 1996, vol. 452, pp. 103–07.

    Article  Google Scholar 

  47. J.R. Li, Q.T. Jiang, H.Y. Sun, and Y.T. Li: Corros. Sci., 2016, vol. 452, pp. 288–301.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 52261018, the Analysis and Testing Foundation of Kunming University of Science and Technology under Grant No. 2022T20110026.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Duan, Y. & Peng, M. Growth Kinetics, and Wear and Corrosion Properties of TiC Coatings on Pure Titanium by Carburizing. Metall Mater Trans A 54, 2947–2959 (2023). https://doi.org/10.1007/s11661-023-07069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07069-x

Navigation