Skip to main content

Advertisement

Log in

Effect of Microstructure, Strain Rate, and Elevated Temperature on the Compression Property of Fe–Co–Ni–Cr–Zr Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Eutectic high-entropy alloys with FCC solid solution phase and hard Laves phase can be used as potential structural materials to meet the service conditions from room temperature to elevated temperature. In this work, a series of FeCoNiCrZr0.5 alloy rods with different diameters (Φ2, Φ3, and Φ5 mm) prepared by vacuum suction casting were applied to investigate the effects of microstructure and strain rate on compression properties at room temperature, as well as the microstructure evolution and deformation behavior at high temperature. With the decrease of the sample diameter, in addition to the significant refinement of the lamellar eutectic in the solidified microstructure, the alloy also undergoes a transformation from regular eutectic to dendritic Laves phase plus eutectic microstructure. Moreover, the deformation behavior of the alloy at different strain rates was discussed based on the cross-sectional microstructure and fracture-surface morphology of the compressed samples. The alloy samples obtained the maximum compressive strengths of 2173 MPa at the strain rate of 10–4/s. Also, the instability of the lamellar eutectic and the precipitation of Ni10Zr7 phase occurred in the alloy sample after annealing above 1073 K. Finally, combined with finite element simulation and microscopic transmission analysis, it is proved that the inhomogeneous microstructure of the deformed alloy under high-temperature compression consists of the deformation region of bending lamellar or shear instability and the spheroidized recrystallization region. This alloy exhibits excellent high-temperature performance due to the coordinated fine microstructure and the large number of stacking faults present in the deformation. In summary, this work will provide new insights and guidance for the design and application of gradient microstructure with dual-phase and structural high-entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.C. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, and H.S. Kim: Nat. Commun., 2020, vol. 11, p. 2736.

    Article  CAS  Google Scholar 

  2. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: Science, 2014, vol. 345, pp. 1153–58.

    Article  CAS  Google Scholar 

  3. X.J. Chang, M.Q. Zeng, K.L. Liu, and L. Fu: Adv. Mater., 2020, vol. 32, p. 1907226.

    Article  CAS  Google Scholar 

  4. Z.W. Tang, S. Zhang, R.P. Cai, Q. Zhou, and H.F. Wang: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1888–1901.

    Article  Google Scholar 

  5. Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li: Acta Mater., 2017, vol. 124, pp. 143–50.

    Article  CAS  Google Scholar 

  6. B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S. Mishra, and R. Banerjee: Scr. Mater., 2019, vol. 162, pp. 18–23.

    Article  CAS  Google Scholar 

  7. Z.C. Luo and H.P. Wang: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1242–53.

    Article  Google Scholar 

  8. J.F. Zhao, H.P. Wang, and B. Wei: J. Mater. Sci. Technol., 2022, vol. 100, pp. 246–53.

    Article  Google Scholar 

  9. H.P. Wang, P. Lü, X. Cai, B. Zhai, J.F. Zhao, and B. Wei: Mater. Sci. Eng. A, 2020, vol. 772, p. 138660.

    Article  CAS  Google Scholar 

  10. L. Tan and Y. Yang: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1188–95.

    Article  Google Scholar 

  11. P. Sathiyamoorthi and H.S. Kim: Prog. Mater. Sci., 2022, vol. 123, p. 100709.

    Article  CAS  Google Scholar 

  12. M.P. Sello and W.E. Stumpf: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5194–5202.

    Article  Google Scholar 

  13. S. Gangireddy, B. Gwalani, V. Soni, R. Banerjee, and R.S. Mishra: Mater. Sci. Eng. A, 2019, vol. 739, pp. 158–66.

    Article  CAS  Google Scholar 

  14. S. Luo, Y. Su, and Z. Wang: Sci. China Mater., 2020, vol. 63, pp. 1279–90.

    Article  CAS  Google Scholar 

  15. T.Q. Cao, L.L. Ma, L. Wang, J.L. Zhou, Y.W. Wang, B.P. Wang, and Y.F. Xue: J. Alloys Compd., 2020, vol. 836, p. 155305.

    Article  CAS  Google Scholar 

  16. Y.T. Wang, W. Chen, J. Zhang, and J.Q. Zhou: J. Alloys Compd., 2021, vol. 850, 156610.

    Article  CAS  Google Scholar 

  17. L. Jiang, Y.P. Lu, W. Wu, Z.Q. Cao, and T.J. Li: J. Mater. Sci. Technol., 2016, vol. 32, pp. 245–50.

    Article  CAS  Google Scholar 

  18. O.N. Senkov and C.F. Woodward: Mater Sci Eng A, 2011, vol. 529, pp. 311–20.

    Article  CAS  Google Scholar 

  19. Y.G. Tong, H. Zhang, H.F. Huang, L.W. Yang, Y.L. Hu, X.B. Liang, M.Y. Hua, and J. Zhang: Intermetallics, 2021, vol. 135, p. 107209.

    Article  CAS  Google Scholar 

  20. F. He, Z.J. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu: J. Alloys Compd., 2016, vol. 656, pp. 284–89.

    Article  CAS  Google Scholar 

  21. D. Chung, Z.Y. Ding, and Y. Yang: Adv. Eng. Mater., 2019, vol. 21, p. 1801060.

    Article  CAS  Google Scholar 

  22. N. Shah, M.R. Rahul, S. Bysakh, and G. Phanikumar: Mater. Sci. Eng. A, 2021, vol. 824, p. 141793.

    Article  CAS  Google Scholar 

  23. W.Y. Huo, H. Zhou, F. Fang, Z.H. Xie, and J.Q. Jiang: Mater. Des., 2017, vol. 134, pp. 226–33.

    Article  CAS  Google Scholar 

  24. T. Maity, K.G. Prashanth, Ö. Balcı, J.T. Kim, T. Schöberl, Z. Wang, and J. Eckert: Int. J. Plast., 2018, vol. 109, pp. 121–36.

    Article  CAS  Google Scholar 

  25. Z.Y. Ding, Q.F. He, Q. Wang, and Y. Yang: Int. J. Plast., 2018, vol. 106, pp. 57–72.

    Article  CAS  Google Scholar 

  26. J.M.D. Lane, S.M. Foiles, H. Lim, and J.L. Brown: Phys. Rev. B, 2016, vol. 94, p. 064301.

    Article  Google Scholar 

  27. Y. Xiao, R. Kozak, M.J.R. Haché, W. Steurer, R. Spolenak, J.M. Wheeler, and Y. Zou: Mater. Sci. Eng. A, 2020, vol. 790, p. 139429.

    Article  CAS  Google Scholar 

  28. H. Li, G. Subhash, X.L. Gao, L.J. Kecskes, and R.J. Dowding: Scr. Mater., 2003, vol. 49, pp. 1087–92.

    Article  CAS  Google Scholar 

  29. S.L. Semiatin and T.R. Bieler: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1787–99.

    Article  CAS  Google Scholar 

  30. K.A. Jackson and J.D. Hunt: Trans. Met. Soc. AIME, 1966, vol. 236, pp. 1129–142.

    CAS  Google Scholar 

  31. A. Zhang, Z. Guo, and S.M. Xiong: Phys. Rev. E, 2018, vol. 97, p. 053302.

    Article  CAS  Google Scholar 

  32. L. Qiao, Z.B. Wang, and J.C. Zhu: Mater. Sci. Eng. A, 2020, vol. 792, p. 139845.

    Article  CAS  Google Scholar 

  33. A.V. Kartavykh, E.A. Asnis, N.V. Piskun, I.I. Statkevich, and M.V. Gorshenkov: J. Alloys Compd., 2015, vol. 643, pp. S182-86.

    Article  CAS  Google Scholar 

  34. H. Song, D.G. Kim, D.W. Kim, M.C. Jo, Y.H. Jo, W. Kim, H.S. Kim, B.J. Lee, and S. Lee: Sci. Rep., 2019, vol. 9, p. 6163.

    Article  Google Scholar 

  35. Y. Mao, D.L. Zhu, J.J. He, C. Deng, Y.J. Sun, G.J. Xue, H.F. Yu, and C. Wang: Trans. Nonferrous Met. Soc. China, 2021, vol. 31, pp. 1700–16.

    Article  CAS  Google Scholar 

  36. S.Y. Wu, D.X. Qiao, H.T. Zhang, J.W. Miao, H.L. Zhao, J. Wang, Y.P. Lu, T.M. Wang, and T.J. Li: J. Mater. Sci. Technol., 2022, vol. 97, pp. 229–38.

    Article  Google Scholar 

  37. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Intermetallics, 2011, vol. 19, pp. 698–706.

    Article  CAS  Google Scholar 

  38. M. Zhang, X.L. Zhou, W.Z. Zhu, and J.H. Li: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1313–27.

    Article  Google Scholar 

  39. J.W. Yeh, S.K. Chen, S.J. Yin, G.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  40. F. Alijani, M. Reihanian, Kh. Gheisari, and H. Miyamoto: Mater. Chem. Phys., 2020, vol. 256, p. 123675.

    Article  CAS  Google Scholar 

  41. A.I. Yurkova, V.V. Cherniavsky, V. Bolbut, M. Krüger, and I. Bogomol: J. Alloys Compd., 2019, vol. 786, pp. 139–48.

    Article  CAS  Google Scholar 

  42. R. Jain, A. Jain, M.R. Rahul, A. Kumar, M. Dubey, R.K. Sabat, S. Samal, and G. Phanikumar: Materialia, 2020, vol. 14, p. 100896.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51734008 and 52088101) and the Space Utilization System of China Manned Space Engineering (Grant No. KJZ-YY-NCL02). The authors would like to thank Mr. C.H. Zheng for his help in the characterization of SEM. Also, the valuable discussions from Mr. M.X. Li and Q. Wang, the support of samples synthesis from Mr. B. Sun and W.B. Liu are all appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P.C., Zhai, B. & Wang, H.P. Effect of Microstructure, Strain Rate, and Elevated Temperature on the Compression Property of Fe–Co–Ni–Cr–Zr Alloy. Metall Mater Trans A 54, 346–357 (2023). https://doi.org/10.1007/s11661-022-06887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06887-9

Navigation