Skip to main content
Log in

Hot Deformation Behavior and Microstructural Evolution of Wire-Arc Additively Fabricated Inconel 718 Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hybridization of additive manufacturing techniques with conventional forming processes offers significant reduction in production cost, time, and material wastage to produce near-net shaped components with refined microstructure and desired properties comparable to its wrought counterparts. In this work, the thermomechanical behavior and microstructural evolution of heat-treated wire-arc additively manufactured Inconel 718 parts were investigated using a Gleeble® 3500 physical simulator at different strain rates and temperatures. The results showed that the serrated yielding and flow stress behavior were independent on the sample orientation under the same deformation conditions. The serration behavior was observed to be more sensitive to the applied deformation temperatures than that of strain rates, whereas the opposite was found to be true in case of flow stress (mechanical properties) behavior. The uniformity of dynamically recrystallized (DRX) microstructure was intricately related to the orientation of columnar grains and processing parameters. The evolution of a near-complete DRX structure was more favorable under low flow stress conditions if the deformation direction was aligned perpendicular to the long axis of columnar grains. The nucleation and growth of weakly textured DRX microstructure were characteristic of strain-induced grain boundary migration as a result of the bulging of migrating grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.E. Seow, H.E. Coules, G. Wu, R.H. Khan, X. Xu, and S. Williams: Mater. Des., 2019, vol. 183, 108157.

    Article  CAS  Google Scholar 

  2. X. Lu, M.V. Li, and H. Yang: Int. J. Adv. Manuf. Tech., 2021, vol. 114, pp. 1517–31.

    Article  Google Scholar 

  3. T. Tsurumaki, S. Tsukamoto, H. Chibahara, and H. Sasahara: J. Adv. Mech. Des. Syst., 2019, vol. 13, p. 28.

    Google Scholar 

  4. X. Xu, J. Ding, S. Ganguly, and S. Williams: J. Mater. Process. Technol., 2019, vol. 265, pp. 201–09.

    Article  CAS  Google Scholar 

  5. R.M. Kindermann, M. Roy, R. Morana, and P.B. Prangnell: Mater. Des., 2020, vol. 195, p. 109031.

    Article  CAS  Google Scholar 

  6. J. Hönnige, C.E. Seow, S. Ganguly, X. Xu, S. Cabeza, H. Coules, and S. Williams: Mater. Sci. Eng. A., 2021, vol. 801, p. 140368.

    Article  Google Scholar 

  7. K. Wang, Y. Liu, Z. Sun, J. Lin, Y. Lv, and B. Xu: J. Alloys. Compd., 2020, vol. 819, p. 152936.

    Article  CAS  Google Scholar 

  8. J. Liu, Y. Xu, Y. Ge, Z. Hou, and S. Chen: Int. J. Adv. Manuf. Tech., 2020, vol. 111, pp. 149–98.

    Article  Google Scholar 

  9. M.A. Jackson, A. Van Asten, J.D. Morrow, S. Min, and F.E. Pfefferkorn: Proc. Manuf., 2016, vol. 5, pp. 989–1005.

    Google Scholar 

  10. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove: Mater. Sci. Technol., 2016, vol. 32, pp. 641–47.

    Article  CAS  Google Scholar 

  11. G. Venturini, F. Montevecchi, A. Scippa, and G. Campatelli: Proc. CIRP, 2016, vol. 55, pp. 95–100.

    Article  Google Scholar 

  12. S. Patel, J. deBarbadillo, and S. Coryell: Proc. 9th Int. Symp. Superalloy 718 & Derivatives: Energy Aerosp. Ind. Appl., 2018, pp. 23–49.

  13. S.P. Kumar, S. Elangovan, R. Mohanraj, and J. Ramakrishna: Mater. Today: Proc., 2021, vol. 46, pp. 7907–20.

    Google Scholar 

  14. L. Zhang and O. Ojo: J. Alloys. Compd., 2020, vol. 829, p. 154455.

    Article  CAS  Google Scholar 

  15. J.F. Radavich: Proceedings Superalloy 718 Metallurgy and Applications, 1989, pp. 229–40.

  16. T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  17. T.M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–15.

    Article  CAS  Google Scholar 

  18. J. Groh, T. Gabb, R. Helmink, and A. Wusatowska-Sarnek: Proc. 8th Int. Symp. Superalloy, 2014, pp. 3–14.

  19. N.S. Weston and M. Jackson: J. Mater. Process. Technol., 2017, vol. 243, pp. 335–46.

    Article  CAS  Google Scholar 

  20. T. Childerhouse and M. Jackson: Met., 2019, vol. 9, p. 689.

    CAS  Google Scholar 

  21. Alcoa: Alcoa Expands R&D Center to Deepen Additive Manufacturing Capabilities (2015), https://news.alcoa.com/press-releases/press-release-details/2015/Alcoa-Expands-RD-Center-to-Deepen-Additive-Manufacturing-Capabilities/default.aspx. Accessed 02 August 2022.

  22. A. Mostafa, D. Shahriari, I.P. Rubio, V. Brailovski, M. Jahazi, and M. Medraj: Int. J. Adv. Manuf. Technol., 2018, vol. 96, pp. 371–85.

    Google Scholar 

  23. B. Lan, Y. Wang, Y. Liu, P. Hooper, C. Hopper, G. Zhang, X. Zhang, and J. Jiang: Mater. Sci. Eng. A., 2021, vol. 823, 141733.

    Article  CAS  Google Scholar 

  24. Z. Jia, Z.-X. Gao, J.-J. Ji, D.-X. Liu, T.-B. Guo, and Y.-T. Ding: Rare Met., 2021, vol. 40, pp. 2083–91.

    Article  CAS  Google Scholar 

  25. G. Tan, H.-Z. Li, Y. Wang, L. Yang, S.-C. Qiao, Z.-Q. Huang, and M.-X. Liu: Trans. Nonferrous Met. Soc. China., 2020, vol. 30, pp. 2709–23.

    Article  CAS  Google Scholar 

  26. K. Tang, Z. Zhang, J. Tian, Y. Wu, and F. Jiang: J. Alloys. Compd., 2021, vol. 860, p. 158541.

    Article  CAS  Google Scholar 

  27. K. Geels, D.B. Fowler, W-.U. Kopp, and R.C. Michael: Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing, Vol. 46, ASTM international, West Conshohocken, 2007, pp. 402–05.

  28. P.G. McCormigk: Acta Metall., 1972, vol. 20, pp. 351–54.

    Article  Google Scholar 

  29. S. Chen, X. Xie, B. Chen, J. Qiao, Y. Zhang, Y. Ren, K.A. Dahmen, and P.K. Liaw: JOM, 2015, vol. 67, pp. 2314–20.

    Article  CAS  Google Scholar 

  30. Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, and Y.L. Wang: Prog. Mater. Sci., 2017, vol. 90, pp. 358–460.

    Article  CAS  Google Scholar 

  31. Y.C. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, and L.-T. Li: J. Alloys. Compd., 2015, vol. 640, pp. 101–13.

    Article  CAS  Google Scholar 

  32. H. Zhang, K. Zhang, S. Jiang, H. Zhou, C. Zhao, and X. Yang: J. Alloys. Compd., 2015, vol. 623, pp. 374–85.

    Article  CAS  Google Scholar 

  33. F.J. Humphreys, and M. Hatherly: Chapter 13 - Hot Deformation and Dynamic Restoration In: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, 2004, pp. 415–50.

  34. Q. Guo-Zheng: Characterization for dynamic recrystallization kinetics based on stress-strain curves In: Recent developments in the study of recrystallization, 2013, pp. 61–88.

  35. P. Zhang, C. Hu, Q. Zhu, C.-G. Ding, and H.-Y. Qin: Mater. Des., 2015, vol. 65, pp. 1153–60.

    Article  CAS  Google Scholar 

  36. T. Antonsson and H. Fredriksson: Metall. Mater. Trans. B, 2005, vol. 36, pp. 85–96.

    Article  Google Scholar 

  37. W. Roberts and B. Ahlblom: Acta Metall., 1978, vol. 26, pp. 801–13.

    Article  CAS  Google Scholar 

  38. F.J. Humphreys, and M. Hatherly: Chapter 5 - The Mobility and Migration of Boundaries In: Recrystallization and Related Annealing Phenomena, 2nd Ed., Elsevier, 2004, pp. 121–67.

  39. X. Liu, J. Fan, K. Li, Y. Song, D. Liu, R. Yuan, J. Wang, B. Tang, H. Kou, and J. Li: J. Alloys. Compd., 2021, vol. 881, 160648.

    Article  CAS  Google Scholar 

  40. T. Maitland, and S. Sitzman: Backscattering Detector and EBSD in Nanomaterials Characterization, In: Scanning Microscopy for Nanotechnology: Techniques and Applications, Springer, 2007, pp. 57–58.

  41. S. Suwas, and R.K. Ray: Texture Evolution During Solidification and Solid-State Transformation In: Crystallographic Texture of Materials, Springer, 2014, pp. 73–93.

  42. S. Suwas, and R.K. Ray: Representation of Texture In: Crystallographic Texture of Materials, Springer, 2014, pp. 11–38.

  43. P. Mannan, A.A. Saleh, A.A. Gazder, G. Casillas, and E.V. Pereloma: J. Alloys. Compd., 2016, vol. 689, pp. 250–65.

    Article  CAS  Google Scholar 

  44. F.J. Humphreys, and M. Hatherly: Chapter 14 - Continuous Recrystallization During and after Large Strain Deformation In: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, 2004, pp. 451–67.

Download references

Acknowledgments

The authors acknowledge the financial support from University of Wollongong (UOW) and Commonwealth Scientific and Industrial Research Organization (CSIRO), respectively. The authors also would like to acknowledge the use of the facilities within the UOW Electron Microscopy center.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. K. Sujan, Huijun Li or Zengxi Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujan, G.K., Gazder, A.A., Awannegbe, E. et al. Hot Deformation Behavior and Microstructural Evolution of Wire-Arc Additively Fabricated Inconel 718 Superalloy. Metall Mater Trans A 54, 226–240 (2023). https://doi.org/10.1007/s11661-022-06863-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06863-3

Navigation