Skip to main content
Log in

Laser Ultrasonic Measurements of Phase Transformation Kinetics in Lean Ti–Mo Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Molybdenum (Mo) is one of the most common \(\beta \)-stabilizing elements used in commercial titanium alloys. In comparison with other traditional \(\beta \)-stabilizers, Mo possesses the lowest diffusion rate in the \(\beta \) phase and a rather low diffusivity in the \(\alpha \) phase, therefore playing an important role in the \(\alpha \)/\(\beta \) phase transformation rates. While most of the earlier studies focused on complex multi-component Ti-systems as well as highly alloyed binary Ti–Mo alloys, here we investigate quasi-binary Ti–Mo model alloys with systematically varied Mo content up to 6 wt pct, which is the relevant level for many commercial Ti-alloys. A Gleeble thermo-mechanical simulator coupled with a Laser Ultrasonics for Metallurgy (LUMet) sensor was used to measure the phase transformation rates in these alloys during continuous heating and cooling treatments at varying rates. The measurably different densities and elastic constants of the parent and product phases result in variation in the ultrasound longitudinal velocity, which is correlated to the transformed volume fractions. The rate of the thermal treatments was seen to have a larger effect on transformation rates during cooling, as compared to that on heating. Further, increasing the Mo content retards the phase transformations. The results obtained during continuous heating were compared with thermodynamic calculations, while those obtained during cooling were modeled using the additivity concept applied to the Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory. The LUMet data presented here together with theoretical background showed that this technique can be successfully used as an additional tool to characterize microstructural evolution during industrially relevant non-isothermal treatments of Ti-alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Lutjering, J.C. Williams, Titanium, 2nd edn. (Engineering Materials and Processes), Springer, Berlin, 2007.

  2. D. Banerjee and J.C. Williams: Acta Mater., 2013, vol. 61, pp. 844–79.

    Article  CAS  Google Scholar 

  3. S. Banerjee and P. Mukhopadhyay: Phase Transformations: Examples from Titanium and Zirconium Alloys, Pergamon Materials Series, vol. 12, Elsevier, United Kingdom, 2007.

    Google Scholar 

  4. F. Bruneseaux, E. Aeby-Gautier, G. Geandier, J. Da Costa Teixeira, B. Appolaire, P. Weisbecker, and A. Mauro: Mater. Sci. Eng. A, 2008, vol. 476, pp. 60–68.

    Article  Google Scholar 

  5. P. Harcuba, J. Šmilauerová, M. Hájek, P. Zháňal, J. Čapek: in Proceedings of the 13th World Conference on Titanium, 2016 pp. 437–41.

  6. F. Chen, G. Xu, X. Zhang, and K. Zhou: Metall. Trans. A, 2016, vol. 47A, pp. 5383–94.

    Article  Google Scholar 

  7. M. Sen, S.K. Kar, T. Banerjee, A. Bhattacharjee, A. Dutta, and S. Banerjee: Metall. Trans. A, 2020, vol. 51A, pp. 2011–24.

    Article  Google Scholar 

  8. M.M. Attallah, S. Zabeen, R. Cernik, and M. Preuss: Mater. Charact., 2009, vol. 60, pp. 1248–56.

    Article  CAS  Google Scholar 

  9. M.C.M. Rodrigues, T. Garcin, and M. Militzer: J. Alloys Compd., 2021, vol. 866, p. 158954.

    Article  CAS  Google Scholar 

  10. M.C.M. Rodrigues and M. Militzer: Mater. Charact., 2020, vol. 163, p. 110273.

    Article  CAS  Google Scholar 

  11. N.A. Semashko, E.V. Lanovenko, V.V. Lanovenko, A.V. Frolov, and A.V. Yakimov: Met. Sci. Heat Treat., 2002, vol. 44, pp. 51–52.

    Article  CAS  Google Scholar 

  12. S. Zamiri, B. Reitinger, H. Grun, J. Roither, S. Bauer, and P. Burgholzer: IEEE International Ultrasonics Symposium (IUS), 2013, vol. 2013, pp. 683–86.

    Google Scholar 

  13. A. Hinterlechner, P. Barriobero-Vila, B. Reitinger, T. Fromherz, G. Requena, and P. Burgholzer: Nondestr. Test. Eval., 2017, vol. 33, pp. 130–38.

    Article  Google Scholar 

  14. A. Shinbine, T. Garcin, and C. Sinclair: Mater. Charact., 2016, vol. 117, pp. 57–64.

    Article  CAS  Google Scholar 

  15. L. Zhu, Q. Zhang, Z. Chen, C. Wei, G.M. Cai, L. Jiang, Z. Jin, and J.C. Zhao: J. Mater. Sci., 2017, vol. 52, pp. 3255–68.

    Article  CAS  Google Scholar 

  16. W.W. Xu, S.L. Shang, B.C. Zhou, Y. Wang, L.J. Chen, C.P. Wang, X.J. Liu, and Z.K. Liu: Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 16870–81.

    Article  CAS  Google Scholar 

  17. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. 243, pp. 244–49.

    Article  Google Scholar 

  18. W.-F. Ho: J. Alloys Compd., 2008, vol. 464, pp. 580–83.

    Article  CAS  Google Scholar 

  19. D.-J. Lin, C.-C. Chuang, J.-H.C. Lin, J.-W. Lee, C.-P. Ju, and H.-S. Yin: Biomaterials, 2007, vol. 28, pp. 2582–89.

    Article  CAS  Google Scholar 

  20. Y.-L. Zhou and D.-M. Luo: J. Alloys Compd., 2011, vol. 509, pp. 6267–72.

    Article  CAS  Google Scholar 

  21. N.T.C. Oliveira and A.C. Guastaldi: Acta Biomater., 2009, vol. 5, pp. 399–405.

    Article  CAS  Google Scholar 

  22. F.F. Cardoso, P.L. Ferrandini, E.S.N. Lopes, A. Cremasco, and R. Caram: J. Mech. Behav. Biomed. Mater., 2014, vol. 32, pp. 31–38.

    Article  CAS  Google Scholar 

  23. W. Zhang, Y. Liu, H. Wu, M. Song, T. Zhang, X. Lan, and T. Yao: Mater. Charact., 2015, vol. 106, pp. 302–07.

    Article  CAS  Google Scholar 

  24. T. Garcin: CTOME V2.31.03: Software for the Analysis of Ultrasound Wave Properties in Metal. www.ctome.org.

  25. ASTM E1382-97: Standard test methods for determining average grain size using semiautomatic and automatic image analysis, Tech. rep., ASTM, 1997.

  26. X.-G. Lu, M. Selleby, and B. Sundman: Calphad, 2005, vol. 29, pp. 68–89.

    Article  CAS  Google Scholar 

  27. H. Ogi, S. Kai, H. Ledbetter, R. Tarumi, M. Hirao, and K. Takashima: Acta Mater., 2004, vol. 52, pp. 2075–80.

    Article  CAS  Google Scholar 

  28. E.S. Fisher and C.J. Renken: Phys. Rev., 1964, vol. 135, pp. 482–94.

    Article  CAS  Google Scholar 

  29. A.V. Shapeev, E.V. Podryabinkin, K. Gubaev, F. Tasnádi, and I.A. Abrikosov: New J. Phys., 2020, vol. 22, p. 113005.

    Article  CAS  Google Scholar 

  30. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn: J. Mater. Res., 2008, vol. 23, pp. 97–104.

    Article  CAS  Google Scholar 

  31. J.W. Lu, Y.Q. Zhao, P. Ge, and H.Z. Niu: Mater. Charact., 2013, vol. 84, pp. 105–11.

    Article  CAS  Google Scholar 

  32. G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, and R.C. Pond: Acta Mater., 2004, vol. 52, pp. 821–32.

    Article  CAS  Google Scholar 

  33. E.S. Fisher, D. Dever, in The Science, R.I. Jaffee, N.E. Promisel, eds. (Technology and Application of, Titanium), 1968, pp. 373—81.

  34. O.N. Senkov, M. Dubois, and J.J. Jonas: Metall. Trans. A, 1996, vol. 27A, pp. 3963–70.

    Article  CAS  Google Scholar 

  35. M.C.M. Rodrigues: phd thesis, The University of British Columbia, 2022.

  36. J.-Y. Yan and G.B. Olson: Calphad, 2016, vol. 52, pp. 152–58.

    Article  CAS  Google Scholar 

  37. R. Davis, H.M. Flower, and D.R.F. West: J. Mater. Sci., 1979, vol. 14, pp. 712–22.

    Article  CAS  Google Scholar 

  38. H.M. Flower, S.D. Henry, and D.R.F. West: J. Mater. Sci., 1974, vol. 9, pp. 57–64.

    Article  CAS  Google Scholar 

  39. Z. Tarzimoghadam, S. Sandlöbes, K.G. Pradeep, and D. Raabe: Acta Mater., 2015, vol. 97, pp. 291–304.

    Article  CAS  Google Scholar 

  40. M.A. Imam, B.B. Rath, C. Hammond, O.P. Arora, in 6th World Conference on Titanium, P. Lacombe, R. Tricot, G. Béranger, eds., Les Editions de Physique, Cedex, Cannes, 1988, pp. 1313–18.

  41. J.W. Cahn: Acta Metall., 1956, vol. 4, pp. 572–75.

    Article  CAS  Google Scholar 

  42. J.W. Christian: The Theory of Transformations in Metals and Alloys, 3rd ed. Pergamon, Oxford, 2002.

    Google Scholar 

  43. N. Kherrouba, M. Bouabdallah, R. Badji, D. Carron, and M. Amir: Mater. Chem. Phys., 2016, vol. 181, pp. 462–69.

    Article  CAS  Google Scholar 

  44. J.D.C. Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis, G. Cailletaud, and N. Späth: Mater. Sci. Eng. A, 2007, vol. 448, pp. 135–45.

    Article  Google Scholar 

  45. B. Appolaire, L. Héricher, and E. Aeby-Gautier: Acta Mater., 2005, vol. 53, pp. 3001–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support and Titanium Metals Corporation (TIMET) for providing the Ti–Mo alloys.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana C. Mendes Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, M.C.M., Militzer, M. Laser Ultrasonic Measurements of Phase Transformation Kinetics in Lean Ti–Mo Alloys. Metall Mater Trans A 53, 3893–3905 (2022). https://doi.org/10.1007/s11661-022-06792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06792-1

Navigation