Skip to main content
Log in

Effect of Cryogenic Thermal Cycling on Tribocorrosion Performance of Fe-Based Bulk Amorphous Alloy in 3.5 Pct NaCl Solution

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of cryogenic thermal cycling on the tribocorrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk amorphous alloy were studied in 3.5 pct NaCl solution. The relaxation enthalpy and fracture toughness increased by the cryogenic thermal cycling treatment while the hardness decreased. Moreover, the corrosion resistance enhanced with the formation of more stable passive film. Accordingly, when sliding against ZrO2 ball under 10 N load in 3.5 pct NaCl solution, the corrosive wear rates of Fe-based bulk amorphous alloys generally decreased with the increase of the number of cryogenic thermal cycles. After 60-cycle treatment, the wear rate decreased by 36.4 pct, which is about 3.3 times lower than that of 316L SS. Meanwhile, cryogenic thermal cycling is beneficial to reduce the coefficient of friction (COF). The dominant wear mechanism is the abrasive wear combined with corrosive wear. The improved toughness and passivation ability due to the cryogenic thermal cycling are responsible for the decline of ΔVW, so as to enhance the tribocorrosion resistance. Therefore, cryogenic thermal cycling could be an effective way to improve the tribocorrosion performance of amorphous alloys and coatings in marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.D. Li, Q. Wei, Q. Li, B.L. Jiang, Y. Chen, and Y.F. Sun: Mater. Sci. Eng. C, 2015, vol. 52, pp. 235–41.

    Article  CAS  Google Scholar 

  2. C.L. Qin, Q.F. Hu, Y.Y. Li, Z.F. Wang, W.M. Zhao, D.V. Louzguine-Luzgin, and A. Inoue: Mater. Sci. Eng. C, 2016, vol. 69, pp. 513–21.

    Article  CAS  Google Scholar 

  3. J.J. Si, C.X. Du, T. Wang, Y.D. Wu, R.S. Wang, and X.D. Hui: J. Alloys Compd., 2018, vol. 741, pp. 542–48.

    Article  CAS  Google Scholar 

  4. N.B. Hua, X.S. Hong, Z.L. Liao, L. Zhang, X.Y. Ye, Q.T. Wang, and P.K. Liaw: J. Non-Cryst. Solids, 2020, vol. 542, p. 120088.

    Article  CAS  Google Scholar 

  5. D.Z. Segu, J.H. Choi, and S.S. Kim: J. Mech. Sci. Technol., 2012, vol. 26, pp. 3565–70.

    Article  Google Scholar 

  6. P.H. Tsai, A.C. Xiao, J.B. Li, J.S.C. Jang, J.P. Chu, and J.C. Huang: J. Alloys Compd., 2014, vol. 586, pp. 94–98.

    Article  CAS  Google Scholar 

  7. X.L. Ji, B. Hu, Y.X. Li, and S.Q. Wang: Tribol. Int., 2015, vol. 91, pp. 214–20.

    Article  CAS  Google Scholar 

  8. S.F. Guo, K.C. Chan, S.H. Xie, P. Yu, Y.J. Huang, and H.J. Zhang: J. Non-Cryst. Solids, 2013, vol. 369, pp. 29–33.

    Article  CAS  Google Scholar 

  9. D. Zenebe, S. Yi, and S.S. Kim: J. Mater. Sci., 2012, vol. 47, pp. 1446–51.

    Article  CAS  Google Scholar 

  10. N.B. Hua, W.Z. Chen, Q.T. Wang, Q.H. Guo, Y.T. Huang, and T. Zhang: J. Alloys Compd., 2018, vol. 745, pp. 111–20.

    Article  CAS  Google Scholar 

  11. D.D. Liang, X.S. Wei, T.C. Ma, B. Chen, H.R. Jiang, Y. Dong, and J. Shen: J. Non-Cryst. Solids, 2019, vol. 510, pp. 62–70.

    Article  CAS  Google Scholar 

  12. Y. Sun and E. Haruman: Corros. Sci., 2011, vol. 53, pp. 4131–40.

    Article  CAS  Google Scholar 

  13. Q. Sun, D.M. Miskovic, and M. Ferry: J. Mater. Sci. Technol., 2022, vol. 104, pp. 214–23.

    Article  Google Scholar 

  14. J. Saida, M. Wakeda, and R. Yamada: Appl. Phys. Lett., 2013, vol. 103, 221910(1-4).

  15. W. Guo, R. Yamada, and J. Saida: Intermetallics, 2018, vol. 93, pp. 141–47.

    Article  CAS  Google Scholar 

  16. M. Bruns and F. Varnik: Materials, 2022, vol. 15, p. 829.

    Article  CAS  Google Scholar 

  17. J. Zhou, S.Y. Di, B.A. Sun, Q.S. Zeng, and B.L. Shen: J. Mater. Sci. Technol., 2021, vol. 65, pp. 54–60.

    Article  CAS  Google Scholar 

  18. S.V. Ketov, A.S. Trifonov, Y.P. Ivanov, A.Y. Churyumov, A.V. Lubenchenko, A.A. Batrakov, J. Jiang, D.V. Louzguine-Luzgin, J. Eckert, J. Orava, and A.L. Greer: NPG Asia Mater., 2018, vol. 10, pp. 137–45.

    Article  CAS  Google Scholar 

  19. W. Guo, J.J. Saida, M. Zhao, S.L. Lü, and S.S. Wu: Mater. Lett., 2019, vol. 247, pp. 135–38.

    Article  CAS  Google Scholar 

  20. M.C. Ri, Y.H. Sun, Z.Y. Xue, D.W. Ding, and W.H. Wang: J. Alloys Compd., 2019, vol. 781, pp. 357–61.

    Article  CAS  Google Scholar 

  21. N.V. Priezjev: J. Non-Cryst. Solids, 2019, vol. 503, pp. 131–38.

    Article  CAS  Google Scholar 

  22. S.Y. Di, Q.Q. Wang, Y.Y. Yang, T. Liang, J. Zhou, L. Su, K.B. Yin, Q.S. Zeng, L.T. Sun, and B.L. Shen: J. Mater. Sci. Technol., 2022, vol. 97, pp. 20–28.

    Article  Google Scholar 

  23. J. Saida, R. Yamada, and M. Wakeda: Zairyo, 2019, vol. 68, pp. 185–90.

    CAS  Google Scholar 

  24. H.M. Zhai, Y. Du, X.Q. Li, W.S. Li, and H.F. Wang: J. Mater. Sci., 2021, vol. 56, pp. 8276–77.

    Article  CAS  Google Scholar 

  25. S.Z. Abbas, F.A. Khalid, and H. Zaigham: J. Non-Cryst. Solids, 2017, vol. 457, pp. 86–92.

    Article  CAS  Google Scholar 

  26. J.L. Gu, Y. Shao, L.X. Shi, J.J. Si, and K.F. Yao: Intermetallics, 2019, vol. 110, p. 106467.

    Article  CAS  Google Scholar 

  27. L. Zhang, Y. Wu, S.D. Feng, W. Li, H.W. Zhang, H.M. Fu, H. Li, Z.W. Zhu, and H.F. Zhang: J. Mater. Sci. Technol., 2020, vol. 38, pp. 73–79.

    Article  Google Scholar 

  28. S.Y. Di, Q.Q. Wang, J. Zhou, Y.Y. Shen, J.Q. Li, M.Y. Zhu, K.B. Yin, Q.S. Zeng, L.T. Sun, and B.L. Shen: Scr. Mater., 2020, vol. 187, pp. 13–18.

    Article  CAS  Google Scholar 

  29. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, and A.L. Greer: Nature, 2015, vol. 524, pp. 200–03.

    Article  CAS  Google Scholar 

  30. J. Pan, Y.X. Wang, Q. Guo, D. Zhang, A.L. Greer, and Y. Li: Nat. Commun., 2018, vol. 9, pp. 1–9.

    Article  CAS  Google Scholar 

  31. C.M. Meylan, F. Papparotto, S. Nachum, J. Orava, M. Miglierini, V. Basykh, J. Scopus preview - Ferenc, T. Kulik, and L. Greer: J. Non-Cryst. Solids, 2020, vol. 548, 120299.

  32. D. Grell, F. Dabrock, and E. Kerscher: Fatigue Fract. Eng. Mater. Struct., 2018, vol. 41, pp. 1330–43.

    Article  CAS  Google Scholar 

  33. R. Yamada, N. Tanaka, W. Guo, and J. Saida: Mater Trans, 2017, vol. 58, pp. 1463–68.

    Article  CAS  Google Scholar 

  34. H.M. Zhai, X.Q. Li, W.S. Li, B. Cheng, D.Q. He, X.J. Zhang, and S. Cui: Surf. Coat. Technol., 2021, vol. 410, p. 126962.

    Article  CAS  Google Scholar 

  35. M.F. Naeini, M.H. Shariat, and M. Eizadjou: J. Alloys Compd., 2010, vol. 509, pp. 4696–4700.

    Article  CAS  Google Scholar 

  36. Z.B. Wang, H.X. Hu, and Y.G. Zheng: Corros. Sci., 2018, vol. 130, pp. 203–17.

    Article  CAS  Google Scholar 

  37. J. Sun, M. Zhang, G.Z. Ding, Y.J. Wang, M.M. Yu, F. Liu, Y.W. Sun, K.J. Zhu, X.J. Zhao, and L. Liu: Colloids Surf. A, 2022, vol. 635, p. 128107.

    Article  CAS  Google Scholar 

  38. A. López-Ortega, R. Bayón, J.L. Arana, A. Arredondo, and A. Igartua: Tribol. Int., 2018, vol. 121, pp. 341–52.

    Article  CAS  Google Scholar 

  39. D.D. Liang, X.S. Wei, C.T. Chang, J.W. Li, Y. Wang, X.M. Wang, and J. Shen: Acta Metall. Sin., 2018, vol. 31, pp. 1098–1108.

    Article  CAS  Google Scholar 

  40. Y.B. Wang, H.F. Li, Y. Cheng, S.C. Wei, and Y.F. Zheng: Electrochem. Commun., 2009, vol. 11, pp. 2187–90.

    Article  CAS  Google Scholar 

  41. Y.W. Ye, Y.X. Wang, X.L. Ma, D.W. Zhang, L.P. Wang, and X.G. Li: Diamond Relat. Mater., 2017, vol. 79, pp. 70–78.

    Article  CAS  Google Scholar 

  42. E. Haruman, Y. Sun, and M.S. Adenan: Tribol. Int., 2020, vol. 151, p. 106412.

    Article  CAS  Google Scholar 

  43. E. Huttunen-Saarivirta, V. Heino, E. Isotahdon, L. Kilpi, and H. Ronkainen: Tribol. Int., 2020, vol. 142, p. 106006.

    Article  CAS  Google Scholar 

  44. L.W. Tan, Z.W. Wang, Y.L. Ma, Y. Yan, and L.J. Qiao: Mater. Res. Express., 2021, vol. 8, p. 086501.

    Article  CAS  Google Scholar 

  45. M.M. Stack, J. Rodling, M.T. Mathew, H. Jawan, W. Huang, G. Park, and C. Hodge: Wear, 2010, vol. 269, pp. 376–82.

    Article  CAS  Google Scholar 

  46. Y.Q. Fu, F. Zhou, M.D. Zhang, Q.Z. Wang, and Z.F. Zhou: Friction, 2021, vol. 9, pp. 1599–1615.

    Article  CAS  Google Scholar 

  47. M. Roy, N.S. More, S. Mischler, and N. Diomidis: Acta Biomater., 2012, vol. 8, pp. 852–59.

    Article  CAS  Google Scholar 

  48. J. Chen and Q. Zhang: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 1011–18.

    Article  CAS  Google Scholar 

  49. W.H. Wang: Prog. Mater Sci., 2012, vol. 57, pp. 487–656.

    Article  CAS  Google Scholar 

  50. N. Espallargas, R.E. Aune, C. Torres, N. Papageorgiou, and A.I. Muñoz: Wear, 2013, vol. 301, pp. 271–79.

    Article  CAS  Google Scholar 

  51. Y. Wang, L.L. Shi, D.L. Duan, S. Li, and J. Xu: Mater. Sci. Eng. C, 2014, vol. 37, pp. 292–304.

    Article  CAS  Google Scholar 

  52. V.G. Efremenko, K. Shimizu, T. Noguchi, A.V. Efremenko, and Y.G. Chabak: Wear, 2013, vol. 305, pp. 155–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51875169) and STU Scientific Research Foundation for Talents (NTF21011).

Competing interest

The authors declare that they have no conflict of interest.

CRediT Authorship Contribution

Juan Jin: Methodology, Investigation, Data curation, and Writing—original draft. Xiulin Ji: Methodology, Investigation, Data curation, Writing—original draft, Writing—review & editing, Resources, and Supervision. Sheng Cao: Methodology, Data curation, and Visualization. Weiwei Zhu: Methodology, Conceptualization, and Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulin Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Ji, X., Cao, S. et al. Effect of Cryogenic Thermal Cycling on Tribocorrosion Performance of Fe-Based Bulk Amorphous Alloy in 3.5 Pct NaCl Solution. Metall Mater Trans A 53, 3404–3417 (2022). https://doi.org/10.1007/s11661-022-06756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06756-5

Navigation