Skip to main content
Log in

Formation of Coarse Recrystallized Grains in 6016 Aluminum Alloy During Holding After Hot Deformation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Controlling the grain size of recrystallized grains during hot rolling is crucial in 6xxx aluminum alloys used in automotive applications to avoid the development of roughness on the surface of the formed sheet. The possible factors responsible for the development of coarse recrystallized grains are investigated in this paper. With this aim, hot compression tests followed by post-deformation holding in the testing furnace as well as by sequential annealing in the SEM chamber are performed and the evolution of the microstructure is characterized using EBSD. Grain overgrowth takes place in both types of experiments. The investigation shows that stored energy is the key factor behind the overgrowth of some recrystallized grains at the expense of others and that Smith–Zener pinning is unable to prevent this phenomenon because of the high driving pressure associated with stored energy. The anisotropic characteristics and behavior of coarse recrystallized grain boundaries are also studied. It comes out that the misorientation angle and axis are not sufficient to determine grain boundary migration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. O. Engler and J. Hirsch, Mater. Sci. Eng. A, 2002, vol. 336, pp. 249–62.

    Article  Google Scholar 

  2. O. Engler, C. Schäfer, and H. Brinkman, Acta Mater., 2012, vol. 60, pp. 5217–32.

    Article  CAS  Google Scholar 

  3. J. Hirsch, Trans. Nonferrous Metals Soc. China, 2014, vol. 24, pp. 1995–2002.

    Article  CAS  Google Scholar 

  4. L. Qin, M. Seefeldt, and P. Van Houtte, Acta Mater., 2015, vol. 84, pp. 215–28.

    Article  CAS  Google Scholar 

  5. K. Li, T. Zou, D. Li, Y. Peng, D. Shu, Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5734–49.

    Article  CAS  Google Scholar 

  6. N. Lu, J. Kang, N. Senabulya, R. Keinan, N. Gueninchault, and A. Shahani, Acta Mater., 2020, vol. 195, pp. 1–12.

    Article  CAS  Google Scholar 

  7. J. Dennis, P. Bate, and F. Humphreys, Acta Mater., 2009, vol. 57, pp. 4539–47.

    Article  CAS  Google Scholar 

  8. H.-C. Kim, C.-G. Kang, M.-Y. Huh, and O. Engler, Scripta Mater., 2007, vol. 57, pp. 325–27.

    Article  CAS  Google Scholar 

  9. K. Huang, Y.J. Li, and K. Marthinsen, Mater. Charact., 2015, vol. 102, pp. 92–97.

    Article  CAS  Google Scholar 

  10. K. Huang, O. Engler, Y.J. Li, and K. Marthinsen, Mater. Sci. Eng. A, 2015, vol. 628, pp. 216–29.

    Article  CAS  Google Scholar 

  11. X. Fang, H. Xiao, K. Marthinsen, A. Belyakov, X. Fang, and K. Huang, Mater. Charact., 2020, vol. 166, pp. 110438.

    Article  CAS  Google Scholar 

  12. V. Miller, A. Johnson, C. Torbet, and T. Pollock, Metall. Mater. Trans. A., 2016, vol. 47A, pp. 1566–74.

    Article  CAS  Google Scholar 

  13. M. Charpagne, J. Franchet, and N. Bozzolo, Mater. Design, 2018, vol. 144, 353–60.

    Article  CAS  Google Scholar 

  14. X. Wang, Z. Huang, B. Cai, N. Zhou, O. Magdysyuk, Y. Gao, S. Srivatsa, L. Tan, and L. Jiang, Acta Mater., 2019, vol. 168, pp. 287–98.

    Article  CAS  Google Scholar 

  15. A. Agnoli, M. Bernacki, R. Logé, J.-M. Franchet, J. Laigo, N. Bozzolo, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4405–21.

    Article  CAS  Google Scholar 

  16. H.-K. Park, J.-H. Kang, C.-S. Park, C.-H. Han, and N.-M. Hwang, Mater. Sci. Eng. A, 2011, vol. 528, pp. 3228–31.

    Article  CAS  Google Scholar 

  17. F. Humphreys and M. Hatherly, 2nd, 2004, p. 658.

  18. I. Andersen, O. Grong, and N. Ryum, Acta Metall. Mater., 1995, vol. 43, pp. 2689–2700.

    Article  CAS  Google Scholar 

  19. P. Rios, Acta Mater., 11997, vol. 45, pp. 1785–89.

    Article  CAS  Google Scholar 

  20. B. Straumal, W. Gust, L. Dardinier, J. Hoffmann, V. Sursaeva, and L. Shvindlerman, Mater. Design, 1997, vol. 18, pp. 293–95.

    Article  CAS  Google Scholar 

  21. A. Agnoli, M. Bernacki, R. Logé, J.-M. Franchet, J. Laigo, and N. Bozzolo, ed. by Superalloys 2012: The 12th International Symposium on Superalloys.

  22. D. Olmsted, E. Holm, and S. Foiles, Acta Mater., 2009, vol. 57, pp. 3704–13.

    Article  CAS  Google Scholar 

  23. D. Olmsted, S. Foiles, and E. Holm, Acta Mater., 2009, vol. 57, pp. 3694–3703.

    Article  CAS  Google Scholar 

  24. O. Engler, Acta Mater., 1998, vol. 46, pp. 1555–68.

    Article  CAS  Google Scholar 

  25. T.-W. Na, H.-K. Park, C.-S. Park, J.-T. Park, and N.-M. Hwang, Acta Mater., 2016, vol. 115, pp. 224–29.

    Article  CAS  Google Scholar 

  26. K.-J. Ko, P.-R. Cha, D. Srolovitz, and N.-M. Hwang, Acta Mater., 2009, vol. 57, pp. 838–45.

    Article  CAS  Google Scholar 

  27. D.-K. Lee, B.-J. Lee, K.-J. Ko, and N.-M. Hwang, Mater. Trans., 2009, vol. 50, pp. 2521–25.

    Article  CAS  Google Scholar 

  28. Y. Huang and F. Humphreys, Mater. Chem. Phys., 2012, vol. 132, pp. 166–74.

    Article  CAS  Google Scholar 

  29. S. Kim and Y. Park, Acta Mater., 2008, vol. 56, pp. 3739–53.

    Article  CAS  Google Scholar 

  30. W. Van Geertruyden, H. Browne, W. Misiolek, and P. Wang, Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1049–56.

    Google Scholar 

  31. A. Eivani, J. Zhou, and J. Duszczyk, Philos. Magn., 2016, vol. 96, pp. 1188–96.

    Article  CAS  Google Scholar 

  32. Y. Mahmoodkhani, J. Chen, M.A. Wells, W.J. Poole, and N.C. Parson, Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5324–35.

    Article  CAS  Google Scholar 

  33. H.-K. Park, H.-G. Kang, C.-S. Park, M.-Y. Huh, and N.-M. Hwang, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5218–23.

    Article  CAS  Google Scholar 

  34. J. Chang, K. Takata, K. Ichitani, and E. Taleff, Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1942–1953.

    Article  CAS  Google Scholar 

  35. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom., 2010, vol. 160, pp. 63–68.

    Article  CAS  Google Scholar 

  36. N. Bozzolo, S. Jacomet, and R. Logé, Mater. Charact., 2012, vol. 70, pp. 28–32.

    Article  CAS  Google Scholar 

  37. C. Kerisit, R. Logé, S. Jacomet, V. Llorca, and N. Bozzolo, J. Microsc., 2013, vol. 250, pp. 189–99.

    Article  CAS  Google Scholar 

  38. A. Seret, C. Moussa, M. Bernacki, J. Signorelli, and N. Bozzolo, J. Appl. Crystallogr., 2019, vol. 52, pp. 548–63.

    Article  CAS  Google Scholar 

  39. A. Nicolaÿ, J. Franchet, J. Cormier, H. Mansour, M. De Graef, A. Seret, and N. Bozzolo, J. Microsc., 2019, vol. 73, pp. 135–47.

    Article  CAS  Google Scholar 

  40. O. Engler and E. Brünger, Matériaux & Techniques, 2002, vol. 90, pp. 71–78.

    Article  CAS  Google Scholar 

  41. P. Konijnenberg, S. Zaefferer, and D. Raabe, Acta Mater., 2015, vol. 99, pp. 402–14.

    Article  CAS  Google Scholar 

  42. A. Nicolaÿ, G. Fiorucci, J. Franchet, J. Cormier, and N. Bozzolo, Acta Mater., 2019, vol. 174, pp. 406–17.

    Article  CAS  Google Scholar 

  43. A. Ridha and W. Hutchinson, Acta Metall., 1982, vol. 30, pp. 1929–39.

    Article  CAS  Google Scholar 

  44. O. Daaland and E. Nes, Acta Mater., 1996, vol. 44, pp. 1389–11.

    Article  CAS  Google Scholar 

  45. H. Vatne, R. Shahani, and E. Nes, Acta Mater., 1995, vol. 44, pp. 4447–62.

    Article  CAS  Google Scholar 

  46. I. Samajdar and R. Doherty, Acta Mater., 1998, vol. 46, pp. 3145–58.

    Article  CAS  Google Scholar 

  47. M. Alvi, S. Cheong, J. Suni, H. Weiland, and A. Rollett, Acta Mater., 2008, vol. 56, pp. 3098–08.

    Article  CAS  Google Scholar 

  48. B. Hutchinson, Mater. Sci. Forum, 2012, vol. 702–703, pp. 3–10.

    Google Scholar 

  49. B. DeCost, E. Holm, Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2771–80.

    Article  CAS  Google Scholar 

  50. E. Nes, N. Ryum, and O. Hunderi, Acta Metall., 1985, vol. 33, pp. 11–22.

    Article  CAS  Google Scholar 

  51. C. Sinclair, F. Robaut, L. Maniguet, J.-D. Mithieux, J.-H. Schmitt, and Y. Brechet, Adv. Eng. Mater., 2003, vol. 5, pp. 570–74.

    Article  CAS  Google Scholar 

  52. S. Tangen, K. Sjølstad, T. Furu, and E. Nes, Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2970–83.

    Google Scholar 

  53. N. Bozzolo, G. Sawina, F. Gerspach, K. Sztwiertnia, A. Rollett, and F. Wagner, Mater. Sci. Forum, 2007, vol. 558–559, pp. 863–68.

    Article  Google Scholar 

  54. S. Wright, Mater. Sci. Technol., 2006, vol. 22, pp. 1287–97.

    Article  CAS  Google Scholar 

  55. N. Bozzolo, N. Dewobroto, T. Grosdidier, and F. Wagner, Mater. Sci. Eng. A, 2005, vol. 397, pp. 346–55.

    Article  CAS  Google Scholar 

  56. Y. Zhang, A Godfrey, Q Liu, W Liu, and D Juul Jensen, Acta Mater., 2009, vol. 57, pp. 2631–39.

  57. C.-S. Park, H.-K. Park, H.-S. Shim, T.-W. Na, C.-H. Han, and N.-M. Hwang, Philos. Mag. Lett., 2015, vol. 95, pp. 220–28.

    Article  CAS  Google Scholar 

  58. N. Pedrazas, T. Buchheit, E. Holm, and E. Taleff, Mater. Sci. Eng. A, 2014, vol. 610, pp. 76–84.

    Article  CAS  Google Scholar 

  59. H. Park, D.-Y. Kim, N.-M. Hwang, Y.-C. Joo, C.-H. Han, and J.-K. Kim, J. Appl. Phys., 2004, vol. 95, pp. 5515–21.

    Article  CAS  Google Scholar 

  60. K.-J. Ko, J.-T. Park, J.-K. Kim, and N.-M. Hwang, Scripta Mater., 2008, vol. 59, pp. 764–67.

    Article  CAS  Google Scholar 

  61. J. Koo, D. Yoon, and M. Henry, Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1489–91.

    Google Scholar 

  62. D. Brandon, Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  63. G. Rohrer, J. Mater. Sci., 2011, vol. 46, pp. 5881–95.

    Article  CAS  Google Scholar 

  64. S. Van Boxel, S. Schmidt, W. Ludwig, Y. Zhang, D.J. Jensen, and W. Pantleon, Mater. Trans., 2014, vol. 55, pp. 128–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work received financial support from C-TEC Constellium Technology Center. The authors would like to thank Alain Legendre for conducting hot compression tests, and Bruno Nicolas and Eric Janot for their assistance with the preparation of samples for quantification of precipitates. Suzanne Jacomet and Cyrille Collin are acknowledged for their help with sample preparation and characterization using EBSD. The authors are also very grateful to Dr. Juliette Chevy and Dr. Louis-Marie Rabbe for helpful comments and discussions. Finally, acknowledgements should be given to the DIGIMU consortium partners for fruitful discussions.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saoussen Ouhiba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouhiba, S., Nicolay, A., Boissonnet, L. et al. Formation of Coarse Recrystallized Grains in 6016 Aluminum Alloy During Holding After Hot Deformation. Metall Mater Trans A 53, 2402–2425 (2022). https://doi.org/10.1007/s11661-022-06672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06672-8

Navigation