Skip to main content
Log in

Transitional Behavior for Dynamic Recrystallization in Nuclear Grade 316H Stainless Steel during Hot Deformation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 11 December 2021

This article has been updated

Abstract

The dynamic recrystallization (DRX) behaviors and their transformation process during hot deformation with various Zener–Hollomon (Z) values were investigated in nuclear grade 316H stainless steel, and the factors influencing DRX transformation, especially adiabatic heating, were evaluated in depth. During hot deformation, with the increase of the Z value, the degree of flow softening (DFS) showed a tendency to decrease first and then increase gradually. The analysis of the microstructure revealed that at low Z value (not exceeding 3.9 × 1019 s–1) deformation conditions, DRX was massively activated and the recrystallization mechanism had a transition from continuous DRX (CDRX) to discontinuous DRX (DDRX) with the increasing Z values, leading to the transition of homogeneous grains to heterogeneous grains. Furthermore, with the reactivation of DRX at high Z value deformation conditions, the discontinuous DRX becomes the primary recrystallization mode. Adiabatic heating plays an important role in facilitating the reactivation of DRX and flow softening during hot deformation with low temperature or high strain rate (high Z values, above 6.1 × 1021 s–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. AI. Martinez, I. Griffiths, MS.A. Karunaratne, PE.J. Flewitt, C. Younes, and T. Scott: Proc. Struct. Integr., 2016, vol. 2, pp. 958–65.

    Google Scholar 

  2. A. Kazumi, D. Philippe, and H.Y. Yang: Prog. Nucl. Energy., 2014, vol. 77, pp. 247–65.

    Article  Google Scholar 

  3. S.G. Kalyakin, F.A. Kozlov, A.P. Sorokin, G.P. Bogoslovskaya, A.P. Ivanov, M.A. Konovalov, A.V. Morozov and V.Y. Stogov: Nucl. Eng. Technol., 2016, vol. 2, pp. 282–6.

    Article  Google Scholar 

  4. S. Kobayashi, R. Kobayashi, and T. Watanabe: Acta Mater., 2016, vol. 102, pp. 397–405.

    Article  CAS  Google Scholar 

  5. Y. Zhao, Y. Wang, S. Tang, W.N. Zhang and Z.Y. Liu: J. Mater. Eng. Perform., 2019, vol. 28, pp. 296–307.

    Article  CAS  Google Scholar 

  6. S. Wang, M. Zhang, H. Wu, and B. Yang: Mater. Charact., 2016, vol. 118, pp. 92–101.

    Article  CAS  Google Scholar 

  7. K. Huang and R.E. Log: Mater. Des., 2016, vol. 111, pp. 548–74.

    Article  CAS  Google Scholar 

  8. K.A. Babu, Y.H. Mozumder, R. Saha, et al.: Mater. Sci. Eng. A., 2018, vol. 734, pp. 269–80.

    Article  CAS  Google Scholar 

  9. M. Jafari and A. Najafizadeh: Mater. Sci. Eng. A., 2009, vol. 501, pp. 16–25.

    Article  Google Scholar 

  10. A.S. Taylor and P.D. Hodgson: Mater. Sci. Eng. A., 2011, vol. 528, pp. 3310–20.

    Article  Google Scholar 

  11. M. Rout, S. Biswas, S.K. Pal, and S.B. Singh: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 864–80.

    Article  Google Scholar 

  12. S. Kim, B.C. Ko, C.M. Lee, et al.: Mater. Sci. J., 2003, vol. 19, pp. 1648–52.

    CAS  Google Scholar 

  13. Z. Yanushkevich, A. Belyakov, and R. Kaibyshev: Acta Mater., 2015, vol. 82, pp. 244–54.

    Article  CAS  Google Scholar 

  14. R.C. Souza, E.S. Silva, A.M. Jorge, et al.: Mater. Sci. Eng. A., 2013, vol. 582, pp. 96–107.

    Article  CAS  Google Scholar 

  15. X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, S.W. Lee, J.T. Yeom and X.J. Mi: J. Alloys Compd., 2017, vol. 693, pp. 426–31.

    Article  CAS  Google Scholar 

  16. A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev and K. Tsuzaki: Acta Mater., 2002, vol. 50, pp. 1547–57.

    Article  CAS  Google Scholar 

  17. D.B.G. Meric, J.C. Van Duysen, and K. Sridharan: J. Nucl. Mater., 2017, vol. 492, pp. 227–30.

    Article  Google Scholar 

  18. H. Li, S. Yang, S. Zhang, B. Zhang, Z. Jiang and H. Feng: Mater. Des., 2017, vol. 118, pp. 207–17.

    Article  CAS  Google Scholar 

  19. C. Maranhão and J.P. Davim: Simul. Model. Pract. Theor., 2010, vol. 18, pp. 139–56.

    Article  Google Scholar 

  20. L. Chen, G. Zhao, and J. Yu: Mater. Des., 2015, vol. 74, pp. 25–35.

    Article  CAS  Google Scholar 

  21. R.L. Goetz and S.L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–7.

    Article  CAS  Google Scholar 

  22. Y.S. Hao, W.C. Liu, and Z.Y. Liu: Acta Metall. Sin. Engl., 2018, vol. 31, pp. 1–14.

    Article  Google Scholar 

  23. Y.C. Li and X.M. Chen: Mater. Des., 2011, vol. 32, pp. 1733–59.

    Article  Google Scholar 

  24. C. Shi, J. Lai, and X.G. Chen: Materials., 2014, vol. 7, p. 244–64.

    Article  Google Scholar 

  25. H.S. Zhang, Q.J. Wang, and Y. Xiao: Mater. Sci. Eng. A., 2016, vol. 650, pp. 483–91.

    Article  CAS  Google Scholar 

  26. Y. Han, G.W. Liu, D.N. Zou, J.P. Sun and G.J. Qiao: Mater. Sci. Technol., 2013, vol. 29, pp. 300–8.

    Article  CAS  Google Scholar 

  27. Y. Han, H. Wu, W. Zhang, D. Zou, G. Liu and G. Qiao: Mater. Des., 2015, vol. 69, pp. 230–40.

    Article  CAS  Google Scholar 

  28. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36.

    Article  CAS  Google Scholar 

  29. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  30. M. Jedrychowski, J. Tarasiuk, B. Bacroix, and S. Wronski: J. Appl. Crystallogr., 2013, vol. 46, pp. 483–92.

    Article  CAS  Google Scholar 

  31. H. Mirzadeh, J. Cabrera, A. Najafizadeh, et al.: Mater. Sci. Eng. A., 2012, vol. 538, pp. 236–45.

    Article  CAS  Google Scholar 

  32. F.H. Abed and G.Z. Voyiadjis: Int. J. Plast., 2005, vol. 21, pp. 1618–39.

    Article  CAS  Google Scholar 

  33. Y. Cao, H.S. Di, J. Zhang, and Y.H. Yang: J. Nucl. Mater., 2015, vol. 456, pp. 133–41.

    Article  CAS  Google Scholar 

  34. H.J. McQueen: Mater. Sci. Eng. A., 2004, vol. 387, pp. 203–8.

    Article  Google Scholar 

  35. B. Mahato, S.K. Shee, and T. Sahu: Acta Mater., 2015, vol. 86, pp. 69–79.

    Article  CAS  Google Scholar 

  36. Q.X. Dai, A.D. Wang, and X.N. Cheng: J. Iron Steel Res., 2002, vol. 14, pp. 34–7.

    CAS  Google Scholar 

  37. E.I. Galindo-Nava and P. Rivera: Acta Mater., 2017, vol. 128, pp. 120–34.

    Article  CAS  Google Scholar 

  38. Y. Chen, X.M. Zhang, Z.H. Cai, H. Ding, M. Pan and H.S. Li: J. Mater. Eng. Perform., 2020, vol. 29, pp. 5503–14.

    Article  CAS  Google Scholar 

  39. A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya and V. Subramanya Sarma: Mater. Des., 2017, vol. 115, pp. 262–75.

    Article  CAS  Google Scholar 

  40. S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V. Subramanya: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 5645–56.

    Article  Google Scholar 

  41. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.

    Article  CAS  Google Scholar 

  42. P. Xia, F. Rodríguez, and I. Sabirov: Mater. Sci. Eng. A., 2020, vol. 793, pp. 139829.

    Article  CAS  Google Scholar 

  43. J. Zhang, H. Di, X. Wang, and Y. Cao: Mater. Des., 2013, vol. 44, pp. 354–64.

    Article  Google Scholar 

  44. M. Zehetbauer and V. Seumer: Acta Metall. Mater., 1993, vol. 41, pp. 577–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Key Research and Development Program of China (Grant No. 2017YFB0305002), the project of XLYC1902034, and the National Natural Science Foundation of China (Grant No. 51704066).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Gao or Zhenyu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 24, 2021; accepted October 26, 2021.

The original online version of this article was revised: Equation 6 and Figs. 4, 7, and 8 were corrected.

Appendix

Appendix

The process of solving the Q value:

The Arrhenius constitutive model can effectively predict the hot deformation behavior of materials and is often used to describe the relationship between stress, strain rate, and deformation temperature, which can be expressed as the following equations:

$$ \dot{\varepsilon } = A_{1} \sigma^{{n_{1} }} \exp [ - Q/\left( {{\text{R}}T} \right)]\quad (\alpha \sigma < 0.8) $$
(A1)
$$ \dot{\varepsilon } = A_{2} \exp (\beta \sigma )\exp [ - Q/\left( {{\text{R}}T} \right)]\quad (\alpha \sigma > 1.2) $$
(A2)
$$ \dot{\varepsilon } = A\left[ {\sinh \left( {\alpha \sigma } \right)} \right]^{n} \exp [ - Q/\left( {{\text{R}}T} \right)]\quad \left( {{\text{for all }}\sigma } \right) $$
(A3)

where Q is the deformation activation energy (kJ/mol); T is the absolute temperature (K); R is the universal gas constant (8.3145 J mol–1 K–1); \(\dot{\varepsilon }\) is the strain rate (s–1); σ is the true stress (MPa); and A, A1, A2, α, n1, n, and β are the material constants, α = β/n1.

The material constants and Q value were attained by applying Eqs. [A1] through [A3] to the experimental data of peak stress (\(\sigma_{p}\)) under different deformation temperatures and strain rates. By taking the natural logarithm on both sides of Eqs. [A1] through [A3], the following equations can be obtained:

$$ \text{ln}\, \sigma = \frac{1}{{n_{1} }} {\text{ln}\, \dot{\varepsilon}} - \frac{1}{{n_{1} }}\text{ln}\, A_{1} + \frac{Q}{{n_{1} {{R}}T}} $$
(A4)
$$ \sigma = \frac{1}{\beta } {\text{ln}\, \dot{\varepsilon}} - \frac{1}{\beta }\text{ln}\, A_{2} + \frac{Q}{{\beta {{R}}T}} $$
(A5)
Fig. A1
figure 9

Evaluation of values of (a) n1 by plotting ln σ vs ln \(\dot{\varepsilon }\), (b) β by plotting \(\sigma\) vs ln \(\dot{\varepsilon }\), (c) n by plotting \({\text{ln}}\left[ {{\text{sinh}}\left( {\alpha \sigma } \right)} \right]\) vs ln \(\dot{\varepsilon }\), and (d) L by plotting \({\text{ln}}\left[ {{\text{sinh}}\left( {\alpha \sigma } \right)} \right]\) vs \(1000/T\)

For a certain deformation temperature, by substituting the values of the peak stress and strain rate into Eqs. (A4) and (A5), the relationship of ln σ vs ln \(\dot{\varepsilon }\) and σ vs ln \(\dot{\varepsilon }\) can be obtained, as presented in Figures A1(a) and (b), respectively. By using linear regression for the data points, the values of n1 and β can be calculated from the reciprocal slope of lines. The mean values of n1 and β for all deformation temperatures are calculated to be 10.081 and 0.0601, respectively. Hence, the value of α = β/n1 = 0.00596 can be obtained.

Furthermore, by taking the natural logarithm on both sides of Eq. [A3], [A6] can be obtained:

$$ {\text{ln sinh}}(\alpha \sigma ) = \frac{1}{n}\mathop {\text{ln} \,\dot{\varepsilon }} - \frac{1}{n}\text{ln}\, A + \frac{Q}{{n{{R}}T}} $$
(A6)

Substituting the values of the peak stress and strain rate at given deformation temperatures into Eq. [A6], the relationship of \({\text{ln sin}} h(\alpha \sigma )\) vs ln \(\dot{\varepsilon }\) can be obtained, as presented in Figure A1(c). By using linear regression for the data points, the value of n can be obtained from the reciprocal slope of lines, for which the mean value for all deformation temperatures is calculated to be 7.418.

For a certain strain rate, by taking the natural logarithm and partial differentiation in Eq. [A3], the activation energy Q can be expressed as

$$ Q\; = \;Rn\left\{ {\frac{\partial [\ln \;\sinh \;(\alpha \sigma )]}{{\partial (1000/T)}}} \right\}\; = \;RnL $$
(A7)

Substituting the values of peak stress and deformation temperature at a given strain rate into Eq. [A7], the relationship of \({\text{ln sin}} h(\alpha \sigma )\) vs 1000/T can be obtained, as presented in Figure A1(d). By using linear regression for the data points, the value of L can be obtained from the slope of lines, which means the value for all strain rates is calculated to be 8.214. Furthermore, the Q = 506.61 kJ/mol can be obtained by substituting the value of n into Eq. [A7].

In this solution process, although some deviation exists because of the nature of the linear regression method, the Q value is attained by using multiple averaged material constants (β, n1, n, and L) under different deformation conditions (T, \(\dot{\varepsilon }\)), and the error range is relatively small. So far, many researchers have investigated the QDRX for the hot deformation of ASSs such as 398 kJ/mol in 316 ASS,[9] 400 kJ/mol in 304 ASS,[10] 420.68 kJ/mol in 316 LN ASS,[6] 516.7 kJ/mol in 20Cr-25Ni super ASS,[26] and 577.85 kJ/mol in 254SMO super ASS.[27] It can be found that the calculated value of QDRX in this nuclear grade 316H ASS is higher than that of the conventional ASS but lower than that of the super ASS whose deformation is more difficult due to high alloying elements,[22] suggesting that the relatively high alloying elements in ASS result in the higher activation energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gao, F., Zhang, W. et al. Transitional Behavior for Dynamic Recrystallization in Nuclear Grade 316H Stainless Steel during Hot Deformation. Metall Mater Trans A 53, 523–534 (2022). https://doi.org/10.1007/s11661-021-06520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06520-1

Navigation