Skip to main content
Log in

Crystal Plasticity Modeling of Hydrogen and Hydrogen-Related Defects in Initial Yield and Plastic Flow of Single-Crystal Stainless Steel 316L

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Understanding of and accounting for various mechanisms that affect inelastic deformation of crystalline metals in the presence of hydrogen remains an unsettled issue. Macroscopic experimental observations contradict limited atomistic simulations, complicating the situation. In this work, we extend a recent physically based crystal viscoplasticity framework to include constitutive equations with a direct dependence on relevant hydrogen and hydrogen-related defect concentrations. Focusing on initial yield and post-yield strain hardening, we consider hydrogen solute drag on mobile dislocations as well as the role of dilute concentrations of hydrogen-vacancy complexes as obstacles to dislocation motion. Furthermore, the evolution of hydrogen and hydrogen-affected defect concentrations is explicitly considered via evolving hydrogen trap concentrations. The resulting framework is used to investigate hydrogen effects on the quasistatic, monotonic, strain-controlled uniaxial loading of single-crystal stainless steel 316L smooth specimens at room temperature in an attempt to connect atomistic insight and the resulting mesoscale model framework with experimental interpretations. Attributing the primary role of hydrogen in this manner is shown to produce good agreement with experiments in the initial yield and post-yield regime. The dominance of various hydrogen effects mechanisms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Johnson, Nature, 1875, vol. 11, p. 393.

    Article  Google Scholar 

  2. S.M. Myers, M. Baskes, H. Birnbaum, J.W. Corbett, G. DeLeo, S. Estreicher, E.E. Haller, P. Jena, N.M. Johnson, and R. Kirchheim, Reviews of Modern Physics, 1992, vol. 64, p. 559.

    Article  CAS  Google Scholar 

  3. H. Barthélémy, International Journal of Hydrogen Energy, 2012, vol. 37, pp. 17364-17372.

    Article  CAS  Google Scholar 

  4. R.P. Gangloff and B.P. Somerday: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classes. (Elsevier, 2012).

  5. K. Popov and E. Nechai, Soviet Materials Science: a transl. of Fiziko-khimicheskaya Mekhanika Materialov/Academy of Sciences of the Ukrainian SSR, 1967, vol. 3, pp. 459-73.

  6. I. Ghermaoui, A. Oudriss, A. Metsue, R. Milet, K. Madani, and X. Feaugas, Scientific Reports, 2019, vol. 9, pp. 1-10.

    Article  CAS  Google Scholar 

  7. C. Beachem, Metallurgical and Materials Transactions B, 1972, vol. 3, pp. 441-455.

    Article  Google Scholar 

  8. H.K. Birnbaum and P. Sofronis, Materials Science and Engineering: A, 1994, vol. 176, pp. 191-202.

    Article  CAS  Google Scholar 

  9. S. Lynch, Scripta Metallurgica, 1979, vol. 13, pp. 1051-1056.

    Article  CAS  Google Scholar 

  10. S. Lynch, Acta Metallurgica, 1988, vol. 36, pp. 2639-2661.

    Article  CAS  Google Scholar 

  11. S. Lynch, Metallography, 1989, vol. 23, pp. 147-171.

    Article  CAS  Google Scholar 

  12. N. Petch and P. Stables, Nature, 1952, vol. 169, pp. 842-843.

    Article  Google Scholar 

  13. L.B. Pfeil, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1926, vol. 112, pp. 182-95.

  14. A. Troiano. General Keynote Lecture, Hydrogen in Metals. in Proc. Int. Conf. on the Effects of Hydrogen on Materials Properties and Selection and Structural Design, Champion, PA (September 23-27, 1973). 1973.

  15. M. Nagumo, Materials Science and Technology, 2004, vol. 20, pp. 940-950.

    Article  CAS  Google Scholar 

  16. M. Hatano, M. Fujinami, K. Arai, H. Fujii, and M. Nagumo, Acta Materialia, 2014, vol. 67, pp. 342-353.

    Article  CAS  Google Scholar 

  17. A. Tehranchi and W.A. Curtin, Engineering Fracture Mechanics, 2019, vol. 216, p. 106502.

    Article  Google Scholar 

  18. G.M. Castelluccio and D.L. McDowell, International Journal of Plasticity, 2017, vol. 98, pp. 1-26.

    Article  Google Scholar 

  19. G.M. Castelluccio, C.B. Geller, and D.L. McDowell, International Journal of Plasticity, 2018, vol. 111, pp. 72-84.

    Article  CAS  Google Scholar 

  20. G. Pressouyre, Metallurgical Transactions A, 1979, vol. 10, pp. 1571-1573.

    Article  Google Scholar 

  21. W. Choo and J.Y. Lee, Metallurgical Transactions A, 1982, vol. 13, pp. 135-140.

    Article  Google Scholar 

  22. H. Lee and J.-Y. Lee, Acta Metallurgica, 1984, vol. 32, pp. 131-136.

    Article  CAS  Google Scholar 

  23. M. Louthan Jr, G. Caskey Jr, J. Donovan, and D. Rawl Jr, Materials Science and Engineering, 1972, vol. 10, pp. 357-368.

    Article  CAS  Google Scholar 

  24. J.Y. Lee and S. Lee, Surface and Coatings Technology, 1986, vol. 28, pp. 301-314.

    Article  CAS  Google Scholar 

  25. D. Connétable, Y. Wang, and D. Tanguy, Journal of Alloys and Compounds, 2014, vol. 614, pp. 211-220.

    Article  CAS  Google Scholar 

  26. A.H. Cottrell and B. Bilby: Proceedings of the Physical Society. Section A, 1949, vol. 62, p. 49.

  27. M. Wen, S. Fukuyama, and K. Yokogawa, Physical Review B, 2004, vol. 69, p. 174108.

    Article  CAS  Google Scholar 

  28. J.E. Angelo, N.R. Moody, and M.I. Baskes, Modelling and Simulation in Materials Science and Engineering, 1995, vol. 3, p. 289.

    Article  CAS  Google Scholar 

  29. D. Tanguy, Y. Wang, and D. Connétable, Acta Materialia, 2014, vol. 78, pp. 135-143.

    Article  CAS  Google Scholar 

  30. S. Myers, P. Nordlander, F. Besenbacher, and J. No, Physical Review B, 1986, vol. 33, p. 854.

    Article  CAS  Google Scholar 

  31. Y. Yagodzinskyy, M. Ivanchenko, and H. Hänninen. Hydrogen-Dislocation Interaction in Austenitic Stainless Steel Studied with Mechanical Loss Spectroscopy. in Solid State Phenomena. 2012. Trans Tech Publ.

  32. S. Karpov, G. Tolstolutskaya, B. Sungurov, and V. Ruzhytskiy, Boпpocы Aтoмнoй нayки и Mexники, 2017, vol. 2, pp. 36-40.

    Google Scholar 

  33. H. Mughrabi, Acta Metallurgica, 1983, vol. 31, pp. 1367-1379.

    Article  CAS  Google Scholar 

  34. L. Chen, X. Xiong, X. Tao, Y. Su, and L. Qiao, Corrosion Science, 2020, vol. 166, p. 108428.

    Article  CAS  Google Scholar 

  35. N. Hansen, X. Huang, and D. Hughes, Materials Science and Engineering: A, 2001, vol. 317, pp. 3-11.

    Article  Google Scholar 

  36. J. Angelo, N. Moody, and M. Baskes, In Hydrogen Effects in Materials, (Trans. Met. Soc. AIME New York, NY: 1996), pp 161-70.

  37. A. Cottrell. Effect of Solute Atoms on the Behavior of Dislocations. in Report of a Conference on Strength of Solids. 1948. The Physical Society London.

  38. J. Hirth and J. Lothe: Theory of Dislocations. 2nd ed. (Wiley, New York, 1982).

    Google Scholar 

  39. Y. Wang, D. Connétable, and D. Tanguy, Physical Review B, 2015, vol. 91, p. 094106.

    Article  CAS  Google Scholar 

  40. P. Hautojarvi, H. Huomo, P. Saariaho, A. Vehanen, and J. Yli-Kauppila, Journal of Physics F: Metal Physics, 1983, vol. 13, p. 1415.

    Article  CAS  Google Scholar 

  41. S. Linderoth, H. Rajainmäki, and R. Nieminen, Physical Review B, 1987, vol. 35, p. 5524.

    Article  CAS  Google Scholar 

  42. R. Kirchheim, Scripta Materialia, 2012, vol. 67, pp. 767-770.

    Article  CAS  Google Scholar 

  43. Y. Tateyama and T. Ohno, Physical Review B, 2003, vol. 67, p. 174105.

    Article  CAS  Google Scholar 

  44. O.Y. Vekilova, D. Bazhanov, S. Simak, and I. Abrikosov, Physical Review B, 2009, vol. 80, p. 024101.

    Article  CAS  Google Scholar 

  45. Y. Fukai, Y. Shizuku, and Y. Kurokawa, Journal of Alloys and Compounds, 2001, vol. 329, pp. 195-201.

    Article  CAS  Google Scholar 

  46. Y. Fukai, Physica Scripta, 2003, vol. 2003, p. 11.

    Article  Google Scholar 

  47. M. Nagumo, ISIJ International, 2001, vol. 41, pp. 590-598.

    Article  CAS  Google Scholar 

  48. T. Matsuo, J. Yamabe, and S. Matsuoka, International Journal of Hydrogen Energy, 2014, vol. 39, pp. 3542-3551.

    Article  CAS  Google Scholar 

  49. A. Cuitino and M. Ortiz, Acta Materialia, 1996, vol. 44, pp. 427-436.

    Article  CAS  Google Scholar 

  50. J. Polák and M. Sauzay, Materials Science and Engineering: A, 2009, vol. 500, pp. 122-129.

    Article  CAS  Google Scholar 

  51. D. Xie, S. Li, M. Li, Z. Wang, P. Gumbsch, J. Sun, E. Ma, J. Li, and Z. Shan, Nature Communications, 2016, vol. 7, pp. 1-7.

    CAS  Google Scholar 

  52. Y. Zhu, Z. Li, M. Huang, and H. Fan, International Journal of Plasticity, 2017, vol. 92, pp. 31-44.

    Article  CAS  Google Scholar 

  53. D. Chen, L.L. Costello, C.B. Geller, T. Zhu, and D.L. McDowell, Acta Materialia, 2019, vol. 168, pp. 436-447.

    Article  CAS  Google Scholar 

  54. M.L. Dos Reis, L. Proville, and M. Sauzay, Physical Review Materials, 2018, vol. 2, p. 093604.

    Article  Google Scholar 

  55. H. Neuhäuser, Physica Scripta, 1993, vol. 1993, p. 412.

    Article  Google Scholar 

  56. D. Caillard and J. Martin: Thermally Activated Mechanisms in Crystal Plasticity. (Pergamon, Oxford, 2003).

    Google Scholar 

  57. A. Argon: Strengthening Mechanisms in Crystal Plasticity. (Oxford University Press on Demand, 2008).

  58. A. Tehranchi, B. Yin, and W. Curtin, Philosophical Magazine, 2017, vol. 97, pp. 400-418.

    Article  CAS  Google Scholar 

  59. G. Hachet, A. Metsue, A. Oudriss, and X. Feaugas, Int. J. Plastic., 2020, vol. 129, p. 102667.

  60. R.L. Fleischer, Acta Metallurgica, 1963, vol. 11, pp. 203-209.

    Article  CAS  Google Scholar 

  61. J. Friedel: Disocations. (Pergamon Press, 1964).

  62. R. Labusch, Physica Status Solidi (b), 1970, vol. 41, pp. 659-669.

    Article  Google Scholar 

  63. A.H. Cottrell and M. Jaswon, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949, vol. 199, pp. 104-114.

  64. A.H. Cottrell: Dislocations and Plastic Flow in Crystals. (Clarendon Press, Oxford, 1953).

    Google Scholar 

  65. W. James and D. Barnett, Solute-Defect Interaction. Theory and Experiment, pp. 136-142. (Pergamon, Oxford, 1985).

  66. R. Sills and W. Cai, Philosophical Magazine, 2016, vol. 96, pp. 895-921.

    Article  CAS  Google Scholar 

  67. Y. Li, T. Morgan, D. Terentyev, S. Ryelandt, A. Favache, S.-C. Wang, M. Wirtz, J. Hoefnagels, J. van Dommelen, and G. De Temmerman, Nuclear Fusion, 2020, vol. 60, p. 086015.

    Article  CAS  Google Scholar 

  68. B. Wilcox and R. Huggins, Journal of the Less Common Metals, 1960, vol. 2, pp. 292-303.

    Article  CAS  Google Scholar 

  69. J. Song and W. Curtin, Acta Materialia, 2014, vol. 68, pp. 61-69.

    Article  CAS  Google Scholar 

  70. G. Girardin and D. Delafosse, Scripta Materialia, 2004, vol. 51, pp. 1177-1181.

    Article  CAS  Google Scholar 

  71. U.F. Kocks, A. A. S., and A. M. F., Progress in Materials Science, 1975, vol. 19.

  72. J. Polák and J. Man, Materials Science and Engineering: A, 2014, vol. 596, pp. 15-24.

    Article  CAS  Google Scholar 

  73. K. Differt and U. Essmann, In Fundamental Aspects of Dislocation Interactions, (Elsevier, New York, 1993), pp 295-299.

  74. U. Essmann and H. Mughrabi, Philosophical Magazine A, 1979, vol. 40, pp. 731-756.

    Article  CAS  Google Scholar 

  75. U. Essmann, U. Gösele, and H. Mughrabi, Philosophical Magazine A, 1981, vol. 44, pp. 405-426.

    Article  CAS  Google Scholar 

  76. K.M. Davoudi and J.J. Vlassak, Journal of Applied Physics, 2018, vol. 123, p. 085302.

    Article  CAS  Google Scholar 

  77. E. Schafler, G. Steiner, E. Korznikova, M. Kerber, and M. Zehetbauer, Materials Science and Engineering: A, 2005, vol. 410, pp. 169-173.

    Article  CAS  Google Scholar 

  78. T. Ungár. Subgrain Size-Distributions, Dislocation Structures, Stacking-and Twin Faults and Vacancy Concentrations in Spd Materials Determined by X-Ray Line Profile Analysis. in Materials Science Forum. 2006. Trans Tech Publ.

  79. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, Journal of the Mechanics and Physics of Solids, 2016, vol. 96, pp. 460-476.

    Article  CAS  Google Scholar 

  80. R.A. Oriani, Acta Metallurgica, 1970, vol. 18, pp. 147-157.

    Article  CAS  Google Scholar 

  81. P. Sofronis and R.M. McMeeking, Journal of the Mechanics and Physics of Solids, 1989, vol. 37, pp. 317-350.

    Article  Google Scholar 

  82. J. Tien, A.W. Thompson, I. Bernstein, and R.J. Richards, Metallurgical Transactions A, 1976, vol. 7, pp. 821-829.

    Article  Google Scholar 

  83. M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, and I.M. Robertson, Journal of the Mechanics and Physics of Solids, 2015, vol. 78, pp. 511-525.

    Article  CAS  Google Scholar 

  84. Y. Liang, D. Ahn, P. Sofronis, R. Dodds Jr, and D. Bammann, Mechanics of Materials, 2008, vol. 40, pp. 115-132.

    Article  Google Scholar 

  85. H. Zheng, B. Rao, S. Khanna, and P. Jena, Physical Review B, 1997, vol. 55, p. 4174.

    Article  CAS  Google Scholar 

  86. E.N. Epperly and R.B. Sills, Acta Materialia, 2020, vol. 193, pp. 182-190.

    Article  CAS  Google Scholar 

  87. D. Ulmer and C. Altstetter, Acta Metallurgica et Materialia, 1993, vol. 41, pp. 2235-2241.

    Article  CAS  Google Scholar 

  88. C. San Marchi, B.P. Somerday, and S.L. Robinson, Int. J. Hydrog. Energy, 2007, vol. 32, pp. 100116.

  89. R. Cahn and P. Haasen: Physical Metallurgy. (North-Holland, Oxford, 1996).

    Google Scholar 

  90. L.P. Kubin, Materials Science and Technology, 1993, vol. 6, pp. 137-190.

    CAS  Google Scholar 

  91. S. Patinet and L. Proville, Physical Review B, 2008, vol. 78, p. 104109.

    Article  CAS  Google Scholar 

  92. H. Stehle and A. Seeger, Zeitschrift für Physik, 1956, vol. 146, pp. 217-241.

    Article  Google Scholar 

  93. G. Abaqus, Dassault Systemes Simulia Corp Providence, RI, 2011.

  94. Y. Yagodzinskyy, T. Saukkonen, S. Kilpeläinen, F. Tuomisto, and H. Hänninen, Scripta Materialia, 2010, vol. 62, pp. 155-158.

    Article  CAS  Google Scholar 

  95. A.-M. Brass and J. Chêne, Corrosion Science, 2006, vol. 48, pp. 3222-3242.

    Article  CAS  Google Scholar 

  96. G. Love, Acta Metallurgica, 1964, vol. 12, pp. 731-737.

    Article  Google Scholar 

  97. P. Ferreira, I. Robertson, and H. Birnbaum, Acta Materialia, 1998, vol. 46, pp. 1749-1757.

    Article  CAS  Google Scholar 

  98. P. Sofronis and I. Robertson, Philosophical Magazine A, 2002, vol. 82, pp. 3405-3413.

    Article  CAS  Google Scholar 

  99. W.G. Johnston, Journal of Applied Physics, 1962, vol. 33, pp. 2716-2730.

    Article  CAS  Google Scholar 

  100. D. Psiachos, T. Hammerschmidt, and R. Drautz, Acta Materialia, 2011, vol. 59, pp. 4255-4263.

    Article  CAS  Google Scholar 

  101. H.M. Ledbetter and R.P. Reed, Journal of Physical and Chemical Reference Data, 1973, vol. 2, pp. 531-618.

    Article  CAS  Google Scholar 

  102. S. Lawrence, B. Somerday, and R. Karnesky, JOM, 2017, vol. 69, pp. 45-50.

    Article  CAS  Google Scholar 

  103. G. Hachet, A. Metsue, A. Oudriss, and X. Feaugas, Acta Materialia, 2018, vol. 148, pp. 280-288.

    Article  CAS  Google Scholar 

  104. R. Kirchheim, Acta Materialia, 2007, vol. 55, pp. 5139-5148.

    Article  CAS  Google Scholar 

  105. A. Barnoush and H. Vehoff, Acta Materialia, 2010, vol. 58, pp. 5274-5285.

    Article  CAS  Google Scholar 

  106. A. Barnoush, M. Asgari, and R. Johnsen, Scripta Materialia, 2012, vol. 66, pp. 414-417.

    Article  CAS  Google Scholar 

  107. K. Miyata, Metallurgical and Materials Transactions A, 2003, vol. 34, pp. 1249-1257.

    Article  Google Scholar 

  108. S.K. Lawrence, B.P. Somerday, M.D. Ingraham, and D.F. Bahr, JOM, 2018, vol. 70, pp. 1068-1073.

    Article  CAS  Google Scholar 

  109. A. Cottrell, Philosophical Magazine, 2006, vol. 86, pp. 3811-3817.

    Article  CAS  Google Scholar 

  110. J.D. Eshelby, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1957, vol. 241, pp. 376-96.

  111. T. Mura: Micromechanics of Defects in Solids. (Springer Science & Business Media, Berlin, 2013).

  112. M. Sauzay and L.P. Kubin, Progress in Materials Science, 2011, vol. 56, pp. 725-784.

    Article  CAS  Google Scholar 

  113. D. Kuhlmann-Wilsdorf, Trans. Met. Soc., 1962, vol. 224, p. 962.

  114. Y. Estrin, L. Toth, A. Molinari, and Y. Bréchet, Acta Materialia, 1998, vol. 46, pp. 5509-5522.

    Article  CAS  Google Scholar 

  115. A. Arsenlis and D.M. Parks, Journal of the Mechanics and Physics of Solids, 2002, vol. 50, pp. 1979-2009.

    Article  CAS  Google Scholar 

  116. A. Patra and D.L. McDowell, Philosophical Magazine, 2012, vol. 92, pp. 861-887.

    Article  CAS  Google Scholar 

  117. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Bréchet, Solid State Phenomena, 1992, vol. 23-24, pp. 455-472.

    Article  Google Scholar 

  118. A. Ma and F. Roters, Acta Materialia, 2004, vol. 52, pp. 3603-3612.

    Article  CAS  Google Scholar 

  119. X. Feaugas, Acta Materialia, 1999, vol. 47, pp. 3617-3632.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the Fluor Marine Propulsion, LLC, particularly discussions with Drs. Clint Geller and Benjamin Anglin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Zirkle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on January 25, 2021; accepted June 14, 2021.

Appendices

Appendix A

The activation energy, \( \Delta G \), associated with dominant short-range barriers to thermally assisted dislocation motion, is expressed as

$$ \Delta G = F_{0} \left( {1 - \left[ {\frac{{\tau_{eff}^{\alpha } }}{{s_{t}^{0} {\raise0.7ex\hbox{$\mu $} \!\mathord{\left/ {\vphantom {\mu {\mu_{0} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\mu_{0} }$}}}}} \right]^{p} } \right)^{q} $$
(A1)

where \( F_{0} \) is the activation energy, and \( p \) and \( q \) are profiling parameters. Parameter \( s_{t}^{0} \) is the athermal limit of thermal slip resistance at 0 K, and \( \mu \) and \( \mu_{0} \) are the shear modulus at temperature \( T \) and 0 K, respectively. This relation must reflect the statistical distribution of barriers at the mesoscale via \( F_{0} \) and profile parameters \( p \) and \( q \).

The threshold stress that considers strengthening mechanisms active in the absence of hydrogen, \( S^{\alpha } \), accounts for the intrinsic lattice friction, the stress required to bow-out a dislocation, and the dislocation-dislocation self-interactions that result from collinear dislocations in pile-ups. The overall contribution of these three mechanisms can be expressed additively as

$$ S^{\alpha } = S_{0}^{\alpha } + \alpha_{LE} \frac{\mu b}{{2d_{struct} }} + \mu b\left( {A_{ii} \rho_{m}^{\alpha } } \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} $$
(A2)

where \( \alpha_{LE} \) is the dislocation line energy, \( f_{w} \) is the volume fraction of dislocation wall substructures, and \( d_{struct} \) is the characteristic dimension of dislocation wall substructures. Intrinsic lattice friction \( S_{0}^{\alpha } \) is quite small for FCC systems, about 4 MPa in this case, and is dominated by the short range barriers associated with thermal slip resistance \( s_{t}^{0} \).

The back stress accounts for the directional internal stress developed due to heterogeneity of plastic deformation within dislocation substructures, ensuring the largely plastic strain in dislocation channels maintains compatibility with the largely elastic strain in dislocation substructure walls. The back stress superimposes on the applied resolved shear stress to form the effective directional over stress. Assuming an Eshelby-type inclusion formulation,[110] the back stress rate can be expressed as

$$ \dot{B}^{\alpha } = \frac{{f_{w} }}{{1 - f_{w} }}\frac{{2\mu (1 - 2S_{1212} )}}{{1 + 4S_{1212} \mu f_{Hill}^{s} }}\dot{\gamma }^{\alpha } $$
(A3)

where \( f_{Hill}^{s} \) is the instantaneous macroscopic plastic deformation tangent and \( S_{1212} \) is a component of the Eshelby tensor component.[111]

Determination of the dislocation substructure parameters relies on experimentally observed similitude characteristics. Following previous works,[112,113] the characteristic dislocation substructure length scale is determined via

$$ d_{struct} = \frac{{K_{struct} \mu b}}{{\hbox{max} (|\tau^{\alpha } |)}} $$
(A4)

where \( K_{struct} \) is the constant of similitude and the max function in the denominator returns the maximum slip system level resolved shear stress in the volume of interest.

The mean free path for dislocation glide is evaluated as

$$ \bar{l} \approx l_{struct} = \eta d_{struct} $$
(A5)

where \( \eta \) is a parameter determining the aspect ratio of dislocation substructures. For example, \( \eta = 1 \) corresponds to dislocation cells while \( \eta = 50 \) corresponds to more elongated substructures such as dislocation veins. For cyclic loading, \( \eta \) is determined by evaluating cyclic plastic strain ranges. In the current study, where specific focus is placed on monotonic loading, this value is assigned a constant value.

The last dislocation substructure parameter to be described is the volume fraction of dislocation dense substructure walls. Here, a phenomenological relationship is leveraged from prior work[114] to define the dislocation substructure wall volume fraction, i.e.,

$$ f_{w} = f_{inf} + (f_{0} - f_{inf} )\exp \left( {\frac{{ - 0.5\gamma^{max} }}{{g_{p} }}} \right) $$
(A6)

where \( f_{inf} \), \( f_{0} \), and \( g_{p} \) are constants that can be estimated by careful substructure characterization using tools such as transmission electron microscopy. Lastly, \( \gamma^{max} \) is the maximum shear strain over all slip systems.

The mobile screw dislocation density evolution on slip system \( \alpha \) is a result of the competition between dislocation multiplication, annihilation, and cross-slip. Following prior work,[115,116] the overall expression for the dislocation density evolution can be written as

$$ \dot{\rho }_{m}^{\alpha } = \dot{\rho }_{mult}^{\alpha } - \dot{\rho }_{annih}^{\alpha } + \dot{\rho }_{cs} |^{\zeta \to \alpha } - \dot{\rho }_{cs} |^{\alpha \to \zeta } . $$
(A7)

The multiplication rate is defined as

$$ \dot{\rho }_{mult}^{\alpha } = \frac{{k_{multi} }}{{bl_{struct} }}\left| {\dot{\gamma }^{\alpha } } \right| $$
(A8)

where \( k_{multi} \) is a constant that depends on the type of expected substructure. The annihilation rate for monotonic loading is defined as

$$ \dot{\rho }_{annih}^{\alpha } = \frac{{2y_{s}^{edge} }}{b}\rho_{m}^{\alpha } \left| {\dot{\gamma }^{\alpha } } \right| $$
(A9)

where \( y_{s}^{edge} \) is the annihilation distance for edge dislocations. A second annihilation term formulated by Castelluccio and McDowell[18] to account for anelastic dislocation annihilation upon unloading is dropped in Eq. [A9] as focused is placed on monotonic loading.

The cross-slip term follows a probabilistic formulation from previous work,[117] but considers a local shear stress that accounts for dislocation substructure shielding, i.e.,

$$ \dot{\rho }_{cs}^{\alpha } |^{\alpha \to \zeta } = - v_{G}^{cs} \varphi_{cs} \rho_{m}^{\alpha } \exp \left( { - V_{cs} \frac{{\tau_{III} - \left| {\tau^{\zeta } - B^{\zeta } } \right|}}{{k_{B} T}}} \right) $$
(A10)
$$ \dot{\rho }_{cs}^{\alpha } |^{\zeta \to \alpha } = - v_{G}^{cs} \varphi_{cs} \rho_{m}^{\zeta } \exp \left( { - V_{cs} \frac{{\tau_{III} - \left| {\tau^{\alpha } - B^{\alpha } } \right|}}{{k_{B} T}}} \right) $$
(A11)

where \( v_{G}^{cs} \), \( \tau_{III} \), \( \varphi_{cs} \), and \( V_{cs} \) are the characteristic cross-slip frequency, critical cross-slip stress at the onset of stage III hardening, cross-slip efficiency, and cross-slip activation volume, respectively. Indices \( \zeta \) and \( \alpha \) denote collinear slip systems that permit cross-slip. To account for wall dislocations for hydrogen trapping, we make a simple extension to the MS-CP model and assume \( \rho_{i}^{\alpha } = 150\rho_{m}^{\alpha } \). This simple relation is justified for simple loading scenarios as the dislocation density in walls tracks with the mobile dislocation density[118] and the chosen pre-factor generates reasonable wall dislocation densities observed experimentally.[119]

A brief outline of the constitutive equations has been provided. The values used for SS316L are provided in Table A1 with complete details on the MS-CP model found in the original paper.[18]

Table A1 Parameters Related to the MS-CP Model for SS316L at Room Temperature

Appendix B

The functional forms for the values used in Eq. [13] are expressed as[66]

$$ \bar{F}^{max} (\chi_{0} ,\psi ) = \left[ {\left( {0.0033\psi + 0.24} \right)\sqrt {\chi_{0} } + 1/\sqrt {0.518\sqrt \psi + 6.52 \times 10^{ - 4} \psi^{2} } } \right]^{ - 2} $$
(B1)
$$ q_{c} = 1.08\left[ {\frac{2}{\pi }\arctan (0.026\psi^{1.15} )} \right]^{0.279} + 0.075\psi \sqrt {\chi_{0} } $$
(B2)
$$ c' = 0.752\psi $$
(B3)
$$ \psi = \left( {\frac{\mu }{3\pi }\frac{1 + v}{1 - v}\frac{\Delta V}{{k_{B} T}}} \right)^{2} $$
(B4)

where the variables in these equations are defined in Section III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zirkle, T., Costello, L. & McDowell, D.L. Crystal Plasticity Modeling of Hydrogen and Hydrogen-Related Defects in Initial Yield and Plastic Flow of Single-Crystal Stainless Steel 316L. Metall Mater Trans A 52, 3961–3977 (2021). https://doi.org/10.1007/s11661-021-06357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06357-8

Navigation