Skip to main content
Log in

Linear Relationship Between dV/dt and Grain Volume During Grain Growth

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The volumetric growth rate of individual grains has been found empirically to be directly proportional to their individual volume, dV/dt = β(V0V). This simple result extends from the relationship \({\mathrm{d}}V/{\mathrm{d}}t=-k{M}_{\mathrm{S}},\) where MS is integral mean curvature of the boundaries of individual grains and k the grain growth rate constant, and the experimentally observed linear relationship between \({M}_{\mathrm{S}}\) and individual grain volume, \({M}_{\mathrm{S}}\) = α(V0V). Here, α is a scaling parameter that collapses the relationships for separate times of growth into a single trend. It has been shown that α =\(\gamma {\bar{V}}^{-2/3}\) where γ is an experimentally determined constant ≃ − 2.7 and \({\bar{V}}\) is the mean grain volume. Thus, β = − = 2.7k \({\bar{V}}^{-2/3}\), simply proportional to the scale of the overall grain structure. These relationships have been tested successfully in numerous 3D grain growth simulations and experiments. This paper describes the relationships among these kinetic and geometric grain characteristics that provide this surprisingly simple description of 3D grain growth, i.e., a linear relationship between the growth rate of an individual grain and its volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

adapted from Ref. [3]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.T. DeHoff, B.R. Patterson, C.A. Sahi, and S. Chiu: Acta Mater., 2015, vol. 100, pp. 240–6. https://doi.org/10.1016/j.actamat.2015.08.011.

    Article  CAS  Google Scholar 

  2. C.A. Sahi: The Role of Integral Mean Curvature in Grain Growth, Dissertation, University of Florida, 2018.

  3. B.R. Patterson, R.T. DeHoff, C.A. Sahi, J. Sun, J. Oddershede, F. Bachmann, E. Lauridsen, and D. Juul Jensen: IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 580https://doi.org/10.1088/1757-899X/580/1/012020.

    Article  CAS  Google Scholar 

  4. J. Zhang, Y. Zhang, W. Ludwig, D. Rowenhorst, P. Voorhees, and H.F. Poulsen: Acta Mater., 2018, vol. 156, pp. 76–85. https://doi.org/10.1016/j.actamat.2018.06.021.

    Article  CAS  Google Scholar 

  5. C.G. Cardona, V. Tikare, B.R. Patterson, and E. Olevsky: J. Am. Ceram. Soc., 2012, vol. 95, pp. 2357–671. https://doi.org/10.1111/j.1551-2916.2012.05164.x.

    Article  CAS  Google Scholar 

  6. R.T. DeHoff: Metall. Trans. A., 1971, vol. 2A, pp. 521–6. https://doi.org/10.1007/BF02663343.

    Article  Google Scholar 

  7. Z. Fang, B.R. Patterson, and M.E. Turner Jr.: Metall. Trans. A., 1991, vol. 22A, pp. 19–23. https://doi.org/10.1007/BF03350945.

    Article  CAS  Google Scholar 

  8. B.R. Patterson and T. Kaub: Unpublished Research, University of Florida, 2014.

  9. R.T. DeHoff: Trans. Met. Soc. AIME., 1967, vol. 239, pp. 617–21. .

    CAS  Google Scholar 

  10. J.W. Cahn: Trans. Met. Soc. AIME., 1967, vol. 239, pp. 610–6. .

    CAS  Google Scholar 

  11. R.T. DeHoff and G.Q. Liu: Metall. Trans. A., 1985, vol. 16A, pp. 2007–11. https://doi.org/10.1007/BF02662401.

    Article  CAS  Google Scholar 

  12. D.J. Rowenhorst, A.C. Lewis, and G. Spanos: Acta Mater., 2010, vol. 58, pp. 5511–9. https://doi.org/10.1016/j.actamat.2010.06.030.

    Article  CAS  Google Scholar 

  13. R.T. DeHoff: in Microstructural Science. J.D. Braun, H.W. Arrowsmith, and J.L. McCall, eds., Elsevier, New York, 1977, pp. 331–48.

    Google Scholar 

  14. R.D. MacPherson and D.J. Srolovitz: Nature., 2007, vol. 446, pp. 1053–5. https://doi.org/10.1038/nature05745.

    Article  CAS  Google Scholar 

  15. E.A. Lazar, J.K. Mason, R.D. MacPherson, and D.J. Srolovitz: Acta Mater., 2011, vol. 59, pp. 6837–47. https://doi.org/10.1016/j.actamat.2011.07.052.

    Article  CAS  Google Scholar 

  16. X. Zhong, D.J. Rowenhorst, H. Beladi, and G.S. Rohrer: Acta Mater., 2017, vol. 123, pp. 136–45. https://doi.org/10.1016/j.actamat.2016.10.030.

    Article  CAS  Google Scholar 

  17. F.C. Hull: Mater. Sci. Technol., 1988, vol. 4, pp. 778–85. https://doi.org/10.1179/mst.1988.4.9.778.

    Article  CAS  Google Scholar 

  18. J.W. Cahn and W.C. Hagel: Acta Metall., 1963, vol. 11, pp. 561–74. .

    Article  CAS  Google Scholar 

  19. J. von Neumann: Written Discussion in Metal Interfaces. American Society for Metals, Cleveland, 1952, pp. 108–10.

    Google Scholar 

  20. W.W. Mullins: J. Appl. Phys., 1956, vol. 27, pp. 900–4. .

    Article  Google Scholar 

  21. D. Harker and E.R. Parker: Trans. ASM., 1945, vol. 34, pp. 156–95. .

    Google Scholar 

  22. C.S. Smith: Trans. Met. Soc. AIME., 1948, vol. 175, pp. 15–51. .

    Google Scholar 

  23. H. Minkowski: Math. Ann., 1903, vol. 57, pp. 447–95. .

    Article  Google Scholar 

  24. R.T. DeHoff and F.N. Rhines eds., Quantitative Microscopy, McGraw-Hill, New York, 1968.

    Google Scholar 

  25. S. Plimpton, A. Thompson, and A. Slepoy: SPPARKS kinetic Monte Carlo simulator, 2011. https://spparks.sandia.gov/index.html, https://spparks.sandia.gov/pdf/sand09.pdf.

  26. M.P. Anderson, G.S. Grest, and D.J. Srolovitz: Philos. Mag. B., 1989, vol. 59, pp. 293–329. https://doi.org/10.1080/13642818908220181.

    Article  Google Scholar 

  27. E.A. Holm and C.C. Battaile: JOM., 2001, vol. 53, pp. 20–3. https://doi.org/10.1007/s11837-001-0063-2.

    Article  Google Scholar 

  28. http://dream3d.bluequartz.net/. Accessed 28 April 2019.

  29. C. Zhang, M. Enomoto, A. Suzuki, and T. Ishimaru: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 1927–33. https://doi.org/10.1007/s11661-004-0141-5.

    Article  CAS  Google Scholar 

  30. F.N. Rhines and B.R. Patterson: Metall. Trans. A., 1982, vol. 13A, pp. 985–93. https://doi.org/10.1007/BF02643395.

    Article  CAS  Google Scholar 

  31. R.T. DeHoff and B.R. Patterson: Acta Mater., 2020, vol. 201, pp. 403–11. https://doi.org/10.1016/j.actamat.2020.09.086.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The overall program and BRP and RTD gratefully acknowledge financial support from NSF Grants DMR-1035188 and 1307665. They also acknowledge the work of Amy Adams, George Strickland, Brittani Maskley and Dr. Tyler Kaub in the tungsten GPE study, and the simulation work performed by Dr. Catherine Sahi. They gratefully thank Dr. Veena Tikare at Sandia National Laboratories, New Mexico for extensive guidance in the computer modeling portion of these studies. Portions of this work were performed in partial fulfillment of Dr. Sahi’s Ph.D. degree.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burton R. Patterson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 7, 2021; accepted May 30, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson, B.R., DeHoff, R.T. Linear Relationship Between dV/dt and Grain Volume During Grain Growth. Metall Mater Trans A 52, 3849–3859 (2021). https://doi.org/10.1007/s11661-021-06346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06346-x

Navigation