Skip to main content
Log in

Strengthening Effects of Tool-Mounted Ultrasonic Vibrations during Friction Stir Lap Welding of Al and Mg Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrasonic assistance in friction stir welding of dissimilar metals has proven efficacious in suppressing intermetallics and enhancing joint quality. In a quest to multiply the ultrasonic effects, a tool-mounted ultrasonic vibration system is used to characterize the welds. The ultrasonic vibrations are enforced in the stirred zone (SZ) along the welding direction. Widely used and industrially applicable AA6061-T6 and AZ31B Mg alloys are taken for experimentation in this study. For a better and in-depth interpretation of ultrasonic effects, weld microstructure characterization is done for various parameters and at different regions of interest. The outcomes suggest the efficacy of acoustic assistance to effectively induce enhanced material turbulence in the SZ and, thus, permit intense intermixing of Al and Mg. The X-ray diffraction and microhardness results diminished β-Al3Mg2 and γ-Al12Mg17 intermetallic compound (IMC) phases and improved weld quality for acoustic joints. Unlike previous studies, the electron backscatter diffraction analysis is added to visualize IMC fragmentation and elimination of the β phase in the ultrasonically treated weld zone. The localized fracture scan of ultrasonic welds resembles deep dimples, signifying a mixed mode of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Sree Sabari, S. Malarvizhi, and V. Balasubramanian: J. Manuf. Process., 2016, vol. 22, pp. 278–89.

  2. S. Kumar and C.S. Wu: J. Harbin Inst. Technol., 2017, vol. 24, pp. 1–37.

    Google Scholar 

  3. A. Kar, S. Malopheyev, S. Mironov, R. Kaibyshev, S. Suwas, and S.V. Kailas: Mater. Charact., 2020, vol. 171, p. 110791.

    Article  Google Scholar 

  4. V.K. Yadav, V. Gaur, and I. V. Singh: Mater. Sci. Eng. A, 2020, vol. 779, p. 139116.

    Article  CAS  Google Scholar 

  5. A. Kar, D. Yadav, S. Suwas, and S. V. Kailas: Mater. Charact., 2020, vol. 164, p. 110371.

    Article  CAS  Google Scholar 

  6. X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, and H. Fujii: Sci. Technol. Weld. Join., 2019, vol. 24, pp. 352–59.

    Article  CAS  Google Scholar 

  7. J. Dong, D. Zhang, W. Zhang, W. Zhang, and C. Qiu: J. Mater. Sci., 2019, vol. 54, pp. 11254–11262.

    Article  CAS  Google Scholar 

  8. A.P. Zykova, S.Y. Tarasov, A.V. Chumaevskiy, and E.A. Kolubaev: Metals (Basel), 2020, vol. 10, p. 772.

    Article  Google Scholar 

  9. B. Meyghani, M.B. Awang, and C.S. Wu: Materwiss. Werksttech., 2020, vol. 51, pp. 550–57.

    Article  CAS  Google Scholar 

  10. Z.L. Liu, K. Yang, and S.D. Ji: J. Mater. Eng. Perform., 2018, vol. 27, pp. 5605–12.

    Article  CAS  Google Scholar 

  11. J. Verma, R.V. Taiwade, C. Reddy, and R.K. Khatirkar: Mater. Manuf. Process., 2018, vol. 33, pp. 308–14.

    Article  CAS  Google Scholar 

  12. Y.S. Sato, S.H.C. Park, M. Michiuchi, and H. Kokawa: Scripta Mater., 2004, vol. 50, pp. 1233–36.

    Article  CAS  Google Scholar 

  13. A.C. Somasekharan and L.E. Murr: Magnes. Technol., 2004, pp. 31–36.

  14. P. Venkateswaran, Z.H. Xu, X. Li, and A.P. Reynolds: J. Mater. Sci., 2009, vol. 44, pp. 4140–47.

    Article  CAS  Google Scholar 

  15. A. Dorbane, B. Mansoor, G. Ayoub, V.C. Shunmugasamy, and A. Imad: Mater. Sci. Eng. A, 2016, vol. 651, pp. 720–33.

    Article  CAS  Google Scholar 

  16. Y.C. Chen and K. Nakata: Scripta Mater., 2008, vol. 58, pp. 433–36.

    Article  CAS  Google Scholar 

  17. A. Kostka, R.S. Coelho, J. dos Santos, and A.R. Pyzalla: Scripta Mater., 2009, vol. 60, pp. 953–56.

    Article  CAS  Google Scholar 

  18. U.F.H. Suhuddin, V. Fischer, and J.F. Dos Santos: Scripta Mater., 2013, vol. 68, pp. 87–90.

    Article  CAS  Google Scholar 

  19. N. Yamamoto, J. Liao, S. Watanabe, and K. Nakata: Mater. Trans., 2009, vol. 50, pp. 2833–38.

    Article  CAS  Google Scholar 

  20. Y. Zhao, S. Jiang, S. Yang, Z. Lu, and K. Yan: Int. J. Adv. Manuf. Technol., 2016, vol. 83, pp. 673–79.

    Article  Google Scholar 

  21. M. Mofid, A. Abdollah-Zadeh, and F. Ghaini: Mater. Des., 2012, vol. 36, pp. 161–67.

    Article  CAS  Google Scholar 

  22. S. Ji, R. Huang, X. Meng, L. Zhang, and Y. Huang: J. Mater. Eng. Perform., 2017, vol. 26, pp. 2359–67.

    Article  CAS  Google Scholar 

  23. H. Liu, Y. Hu, S. Du, and H. Zhao: J. Manuf. Process., 2019, vol. 42, pp. 159–66.

    Article  Google Scholar 

  24. X.C. Liu and C.S. Wu: Mater. Des., 2016, vol. 90, pp. 350–58.

    Article  CAS  Google Scholar 

  25. X.C. Liu and C.S. Wu: J. Mater. Process. Technol., 2015, vol. 225, pp. 32–44.

    Article  CAS  Google Scholar 

  26. G.K. Padhy, C.S. Wu, S. Gao, and L. Shi: Mater. Des., 2016, vol. 92, pp. 710–23.

    Article  CAS  Google Scholar 

  27. S. Ji, X. Meng, Z. Liu, R. Huang, and Z. Li: Mater. Lett., 2017, vol. 201, pp. 173–76.

    Article  CAS  Google Scholar 

  28. X.Q. Lv, C.S. Wu, C.L. Yang, and G.K. Padhy: J. Mater. Process. Technol., 2018, vol. 254, pp. 145–57.

    Article  CAS  Google Scholar 

  29. S. Kumar, C.S. Wu, Z. Sun, and W. Ding: Int. J. Adv. Manuf. Technol., 2019, vol. 100, pp. 1787–99.

    Article  Google Scholar 

  30. S. Kumar and C.S. Wu: Mater. Today Proc., 2018, vol. 5, pp. 18142–18151.

    Article  CAS  Google Scholar 

  31. S. Kumar, C.S. Wu, and G.K. Padhy: 7th Int. Conf. on Welding Science and Engineering (WSE 2017),” in conjunction with 3rd Int. Symp. on Computer-Aided Welding Engineering (CAWE 2017), Shandong University, Jinan, China, 2017, pp. 272–76.

  32. Z. Liu, S. Ji, and X. Meng: Int. J. Adv. Manuf. Technol., 2018, vol. 97, pp. 4127–36.

    Article  Google Scholar 

  33. B. Strass, G. Wagner, C. Conrad, B. Wolter, S. Benfer, and W. Fürbeth: Adv. Mater. Res., 2014, vols. 966–967, pp. 521–35.

    Article  Google Scholar 

  34. B. Langenecker: Trans. Son. Ultrason., 1966, vol. 13, pp. 1–8.

    Article  Google Scholar 

  35. Y. Li, S. Tian, C.S. Wu, and M. Tanaka: J. Manuf. Process., 2021, vol. 64, pp. 1412–19.

    Article  Google Scholar 

  36. L. Shi, C.S. Wu, and X.C. Liu: J. Mater. Process. Technol., 2015, vol. 222, pp. 91–102.

    Article  CAS  Google Scholar 

  37. K. Park, G.Y. Kim, and J. Ni: ASME Int. Mech. Eng. Congr. Expos., 2007, vol. 3, pp. 731–37.

    Google Scholar 

  38. S. Kumar: Arch. Civ. Mech. Eng., 2016, vol. 16, pp. 473–84.

    Article  Google Scholar 

  39. S. Kumar, W. Ding, Z. Sun, and C.S. Wu: Int. J. Adv. Manuf. Technol., 2018, vol. 97, pp. 1269–84.

    Article  Google Scholar 

  40. S. Kumar, C.S. Wu, and G. Song: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2863–81.

    Article  Google Scholar 

  41. S. Kumar and C.S. Wu: J. Alloys Compd., 2020, vol. 827, p. 154343.

    Article  CAS  Google Scholar 

  42. ASTM International, West Conshohohocken, PA, 2008.

  43. S. Kumar, C.S. Wu, G.K. Padhy, and W. Ding: J. Manuf. Process., 2017, vol. 26, pp. 295–322.

    Article  Google Scholar 

  44. A. Panteli, J.D. Robson, I. Brough, and P.B. Prangnell: Mater. Sci. Eng. A, 2012, vol. 556, pp. 31–42.

    Article  CAS  Google Scholar 

  45. Y. Song, X. Yang, L. Cui, X. Hou, Z. Shen, and Y. Xu: Mater. Des., 2014, vol. 55, pp. 9–18.

    Article  CAS  Google Scholar 

  46. Y. Wei, J. Li, J. Xiong, F. Huang, and F. Zhang: Mater. Des., 2012, vol. 33, pp. 111–14.

    Article  CAS  Google Scholar 

  47. L. Peng, L. Yajiang, G. Haoran, and W. Juan: Mater. Lett., 2005, vol. 59, pp. 2001–05.

    Article  Google Scholar 

  48. L. Shi, C.S. Wu, S. Gao, and G.K. Padhy: Scripta Mater., 2016, vol. 119, pp. 21–26.

    Article  CAS  Google Scholar 

  49. J. Zhao, C.S. Wu, and H. Su: J. Manuf. Process., 2021, vol. 62, pp. 388–402.

    Article  Google Scholar 

  50. A. Gerlich, P. Su, M. Yamamoto, and T.H. North: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 254–64.

    Article  CAS  Google Scholar 

  51. J. Mohammadi, Y. Behnamian, A. Mostafaei, H. Izadi, T. Saeid, A.H. Kokabi, and A.P. Gerlich: Mater. Charact., 2015, vol. 101, pp. 189–207.

    Article  CAS  Google Scholar 

  52. J. Wang, Q. Sun, L. Wu, Y. Liu, J. Teng, and J. Feng: J. Mater. Process. Technol., 2017, pp. 185–97.

  53. S.Y. Tarasov, V.E. Rubtsov, S.V. Fortuna, A.A. Eliseev, A.V. Chumaevsky, T.A. Kalashnikova, and E.A. Kolubaev: Weld. World, 2017, vol. 61, pp. 679–90.

    Article  CAS  Google Scholar 

  54. S. Kumar, C.S. Wu, and L. Shi: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 5725–42.

    Article  Google Scholar 

  55. V. Firouzdor and S. Kou: Weld. J., 2009, vol. 88, pp. 213–24.

    Google Scholar 

  56. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia: Progr. Mater. Sci., 2008, vol. 53, pp. 980–1023.

    Article  CAS  Google Scholar 

  57. K. Kumar, S. V. Kailas, and T.S. Srivatsan: Mater. Manuf. Process., 2011, vol. 26, pp. 915–21.

    Article  CAS  Google Scholar 

  58. A.C. Somasekharan and L.E. Murr: J. Mater. Sci., 2006, vol. 41, pp. 5365–70.

    Article  CAS  Google Scholar 

  59. S. Ji, S. Niu, J. Liu, and X. Meng: J. Mater. Process. Technol., 2019, vol. 35, pp. 1712–18.

    Google Scholar 

  60. A. Kostka, R.S. Coelho, J. dos Santos, and A.R. Pyzalla: Scripta Mater., 2009, vol. 60, pp. 953–56.

    Article  CAS  Google Scholar 

  61. S. Ji, Z. Li, L. Zhang, Z. Zhou, and P. Chai: Mater. Des., 2016, vol. 103, pp. 160–70.

    Article  CAS  Google Scholar 

  62. X.C. Liu, C.S. Wu, and G.K. Padhy: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 345–52.

    Article  CAS  Google Scholar 

  63. D. Dietrich, D. Nickel, M. Krause, T. Lampke, M.P. Coleman, and V. Randle: J. Mater. Sci., 2011, vol. 46, pp. 357–64.

    Article  CAS  Google Scholar 

  64. J. Mohammadi, Y. Behnamian, A. Mostafaei, and A.P. Gerlich: Mater. Des., 2015, vol. 75, pp. 95–112.

    Article  CAS  Google Scholar 

  65. B.S. Naik, D.L. Chen, X. Cao, and P. Wanjara: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4333–49.

    Article  Google Scholar 

  66. V. Firouzdor and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3238–51.

    Article  Google Scholar 

  67. C. Zhou, X. Yang, and G. Luan: Mater. Chem. Phys., 2006, vol. 98, pp. 285–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 52035005) and the Key R&D Program of Shandong Province in China (Grant No. 2018GGX103001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuansong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 28, 2020; accepted April 5, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Wu, C. Strengthening Effects of Tool-Mounted Ultrasonic Vibrations during Friction Stir Lap Welding of Al and Mg Alloys. Metall Mater Trans A 52, 2909–2925 (2021). https://doi.org/10.1007/s11661-021-06282-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06282-w

Navigation