Skip to main content
Log in

Size Control of In Situ Synthesized TiB2 Particles in Molten Aluminum

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum-matrix nanocomposites offer advantageous properties over conventional aluminum alloys. However, controlling the size and size distribution of ceramic nanoparticles during in situ synthesis at high temperatures has been a long-term challenge due to a lack of effective size-control mechanisms. Here, we successfully synthesized titanium diboride (TiB2) nanoparticles with an unprecedented narrow size distribution in molten aluminum. The average size of TiB2 nanoparticles was tunable from 22.1 to 171.4 nm by solely controlling the reaction temperature under a diluted reactant salt solution. To uncover the mechanism of particle size control, an interface diffusion-controlled model was developed. The dilution of reactant salt was crucial to achieve a steady reaction environment while confining the growth of the particles in a shallow region. The model suggests that the average size of as-synthesized nanoparticles is mostly controlled by reaction temperature and unaffected by the titanium salt concentration in a diluted solution due to a steady diffusion of titanium and boron. Temperature controls the diffusion of reactants and nucleation rate to dictate the average size of the as-synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Geng, G. Liu, T. Hong, M. Wang, D. Chen, N. Ma, and H. Wang: J. Alloys Compd., 2019, vol. 775, pp. 193–201.

    Article  CAS  Google Scholar 

  2. C. Mallikarjuna, S.M. Shashidhara, U.S. Mallik, and K.I. Parashivamurthy: Mater. Des., 2011, vol. 32, pp. 3554–9.

    Article  CAS  Google Scholar 

  3. L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, and X.-C. Li: Nature, 2015, vol. 528, pp. 539–43.

    Article  CAS  Google Scholar 

  4. Q. Zhang and D.L. Chen: Scr. Mater., 2004, vol. 51, pp. 863–7.

    Article  CAS  Google Scholar 

  5. Z.Z. Chen and K. Tokaji: Mater. Lett., 2004, vol. 58, pp. 2314–21.

    Article  CAS  Google Scholar 

  6. C. Cao, L. Chen, J. Xu, J. Zhao, M. Pozuelo, and X. Li: Mater. Lett., 2016, vol. 174, pp. 213–6.

    Article  CAS  Google Scholar 

  7. C. Cao, W. Liu, Z. Liu, J. Xu, I. Hwang, I. De Rosa, and X. Li: Mater. Des., 2018, vol. 146, pp. 163–71.

    Article  CAS  Google Scholar 

  8. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock: Nature, 2017, vol. 549, pp. 365–9.

    Article  CAS  Google Scholar 

  9. M. Sokoluk, C. Cao, S. Pan, and X. Li: Nat. Commun., 2019, vol. 10, p. 98.

    Article  CAS  Google Scholar 

  10. A. Javadi, C. Cao, and X. Li: Procedia Manuf., 2017, vol. 10, pp. 531–5.

    Article  Google Scholar 

  11. W. Liu, C. Cao, J. Xu, X. Wang, and X. Li: Mater. Lett., 2016, vol. 185, pp. 392–5.

    Article  CAS  Google Scholar 

  12. Y. Yang, J. Lan, and X. Li: Mater. Sci. Eng. A, 2004, vol. 380, pp. 378–83.

    Article  CAS  Google Scholar 

  13. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan: Mater. Sci. Eng. A, 1994, vol. 189, pp. 95–104.

    Article  Google Scholar 

  14. J. Fjellstedt and A.E.W. Jarfors: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 527–32.

    Article  CAS  Google Scholar 

  15. Y. Tang, Z. Chen, A. Borbély, G. Ji, S.Y. Zhong, D. Schryvers, V. Ji, and H.W. Wang: Mater. Charact., 2015, vol. 102, pp. 131–36.

    Article  CAS  Google Scholar 

  16. N. El-Mahallawy, M.A. Taha, A.E.W. Jarfors, and H. Fredriksson: J. Alloys Compd., 1999, vol. 292, pp. 221–9.

    Article  CAS  Google Scholar 

  17. P. Moldovan and M. Butu: J. Eng. Sci. Innov., 2019, vol. 4, pp. 285–300.

    Google Scholar 

  18. A.E. Karantzalis, A. Lekatou, M. Georgatis, V. Poulas, and H. Mavros: J. Mater. Eng. Perform., 2011, vol. 20, pp. 198–202.

    Article  CAS  Google Scholar 

  19. Y. Liang, J. Zhou, S. Dong, and T. Yang: J. Wuhan Univ. Technol. Mater Sci Ed, 2008, vol. 23, p. 342.

  20. Z. Liu, Q. Han, Z. Huang, and J. Xing: Metall. Mater. Trans. A, 2016, vol. 47, pp. 916–26.

    Article  CAS  Google Scholar 

  21. C. Cao, W. Liu, A. Javadi, H. Ling, and X. Li: Procedia Manuf., 2017, vol. 10, pp. 634–40.

    Article  Google Scholar 

  22. A. Javadi, S. Pan, C. Cao, G. Yao, and X. Li: Mater. Lett., 2018, vol. 229, pp. 107–10.

    Article  CAS  Google Scholar 

  23. N.T.K. Thanh, N. Maclean, and S. Mahiddine: Chem. Rev., 2014, vol. 114, pp. 7610–30.

    Article  CAS  Google Scholar 

  24. M.X. Guo, M.P. Wang, K. Shen, L.F. Cao, Z. Li, and Z. Zhang: J. Alloys Compd., 2008, vol. 460, pp. 585–9.

    Article  CAS  Google Scholar 

  25. M. Estruga, L. Chen, H. Choi, X. Li, and S. Jin: ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 8813–9.

    Article  CAS  Google Scholar 

  26. L. Anestiev, L. Froyen, and L. van Vugt: J. Appl. Phys., 2000, vol. 88, pp. 2130–7.

    Article  CAS  Google Scholar 

  27. L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-C. Li: Nat. Commun., 2014, vol. 5, p. 3879.

    Article  CAS  Google Scholar 

  28. J. Xu: UCLA, 2015.

  29. A.E. Nielsen: J. Phys. Chem., 1961, vol. 65, pp. 46–9.

    Article  CAS  Google Scholar 

  30. L. Wang: EPJ Web Conf., 2017, vol. 151, p. 02004.

    Article  CAS  Google Scholar 

  31. T. Wang, F. Zhang, L. Yang, X.W. Fang, S.H. Zhou, M.J. Kramer, C.Z. Wang, K.M. Ho, and R.E. Napolitano: Sci. Rep., 2015, vol. 5, pp. 1–9.

    Google Scholar 

  32. X. Wang, J. Song, W. Vian, H. Ma, and Q. Han: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3285–90.

    Article  CAS  Google Scholar 

  33. M. Emamy, M. Mahta, and J. Rasizadeh: Compos. Sci. Technol., 2006, vol. 66, pp. 1063–6.

    Article  CAS  Google Scholar 

  34. Q. Li and Y.-S. Jun: Commun. Chem., 2018, vol. 1, pp. 1–9.

    Article  Google Scholar 

  35. K.L. Tee, L. Lu, and M.O. Lai: Compos. Struct., 1999, vol. 47, pp. 589–93.

    Article  Google Scholar 

  36. A. Chrysanthou and G. Erbaccio: J. Mater. Sci., 1995, vol. 30, pp. 6339–44.

    Article  CAS  Google Scholar 

  37. E. Taheri-Nassaj, M. Kobashi, and T. Choh: Scr. Mater., 1997, vol. 37, pp. 605–14.

    Article  CAS  Google Scholar 

  38. I. Gotman, M.J. Koczak, and E. Shtessel: Mater. Sci. Eng. A, 1994, vol. 187, pp. 189–99.

    Article  Google Scholar 

  39. C. Biselli, D.G. Morris, and N. Randall: Scr. Metall. Mater., 1994, vol. 30, pp. 1327–32.

    Article  CAS  Google Scholar 

  40. L. Lu, M.O. Lai, X.P. Niu, and H.N. Ho: Z. Fuer Met. Res. Adv. Tech., 1998, vol. 89, pp. 567–72.

    CAS  Google Scholar 

  41. X. Liu, Y. Liu, D. Huang, Q. Han, and X. Wang: Mater. Sci. Eng. A, 2017, vol. 705, pp. 55–61.

    Article  CAS  Google Scholar 

  42. C.F. Feng and L. Froyen: J. Mater. Sci., 2000, vol. 35, pp. 837–50.

    Article  CAS  Google Scholar 

  43. G. Han, W. Zhang, G. Zhang, Z. Feng, and Y. Wang: Mater. Sci. Eng. A, 2015, vol. 633, pp. 161–8.

    Article  CAS  Google Scholar 

  44. D. Chen, Z. Chen, P. Zhang, Y.J. Zhang, H. Ma, and H.W. Wang: Adv. Mater. Res., 2012, vol. 535–537, pp. 1005–10.

    Article  CAS  Google Scholar 

  45. L. Lu, M.O. Lai, and F.L. Chen: Acta Mater., 1997, vol. 45, pp. 4297–309.

    Article  CAS  Google Scholar 

  46. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang: Mater. Sci. Eng. A, 2014, vol. 590, pp. 246–54.

    Article  CAS  Google Scholar 

  47. J.V. Wood, P. Davies, and J.L.F. Kellie: Mater. Sci. Technol., 1993, vol. 9, pp. 833–40.

    Article  CAS  Google Scholar 

  48. S. Lakshmi, L. Lu, and M. Gupta: J. Mater. Process. Technol., 1998, vol. 73, pp. 160–6.

    Article  Google Scholar 

  49. J. Xue, J. Wang, Y. Han, C. Chen, and B. Sun: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1012–7.

    Article  CAS  Google Scholar 

  50. Y. Chen and D.D.L. Chung: J. Mater. Sci., 1996, vol. 31, pp. 311–5.

    Article  CAS  Google Scholar 

  51. K. Sivaprasad, S.P.K. Babu, S. Natarajan, R. Narayanasamy, B.A. Kumar, and G. Dinesh: Mater. Sci. Eng. A, 2008, vol. 498, pp. 495–500.

    Article  CAS  Google Scholar 

  52. Y. Han, X. Liu, and X. Bian: Compos. Part Appl. Sci. Manuf., 2002, vol. 33, pp. 439–44.

    Article  Google Scholar 

  53. M.A. Herbert, C. Sarkar, R. Mitra, and M. Chakraborty: Metall. Mater. Trans. A, 2007, vol. 38, pp. 2110–26.

    Article  CAS  Google Scholar 

  54. A. Mandal, R. Maiti, M. Chakraborty, and B. Murty: Mater. Sci. Eng. A, 2004, vol. 386, pp. 296–300.

    Article  Google Scholar 

  55. M. Mandal and R. Mitra: Mater. Charact., 2018, vol. 146, pp. 267–78.

    Article  CAS  Google Scholar 

  56. Z.Y. Ma, J. Bi, Y.X. Lu, H.W. Shen, and Y.X. Gao: Compos. Interfaces, 1993, vol. 1, pp. 287–91.

    Article  CAS  Google Scholar 

  57. Z.Y. Ma, J.H. Li, S.X. Li, X.G. Ning, Y.X. Lu, and J. Bi: J. Mater. Sci., 1996, vol. 31, pp. 741–7.

    Article  CAS  Google Scholar 

  58. A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, and Y.R. Mahajan: Scr. Metall. Mater., 1990, vol. 24, pp. 873–8.

    Article  CAS  Google Scholar 

  59. Z. Li, D. Chen, H. Wang, E.J. Lavernia, and A. Shan: J. Mater. Res. Warrendale, 2014, vol. 29, pp. 2514–24.

    Article  CAS  Google Scholar 

  60. J.P. Tu, N.Y. Wang, Y.Z. Yang, W.X. Qi, F. Liu, X.B. Zhang, H.M. Lu, and M.S. Liu: Mater. Lett., 2002, vol. 52, pp. 448–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by MetaLi, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 11, 2020; accepted March 19, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Yao, G., Pan, S. et al. Size Control of In Situ Synthesized TiB2 Particles in Molten Aluminum. Metall Mater Trans A 52, 2657–2666 (2021). https://doi.org/10.1007/s11661-021-06260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06260-2

Navigation