Skip to main content
Log in

Microstructure Evolution of Commercial Pure Titanium During Interrupted In Situ Tensile Test

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructure evolution of commercial pure titanium is investigated by interrupted in situ electron backscatter diffraction (EBSD) measurement during tensile deformation along transverse direction at room temperature. After 24 pct elongation, the split basal texture of initial material is weakened and rotated around 90 deg along normal direction (ND). \({{11}\bar{2}{{2}}}\)-\({{10}\bar{1}{{2}}}\) double twin is the main reason for the change of texture. The basal poles are rotated nearly perpendicular to ND by the primary \({{11}\bar{2}{{2}}}\) twin and back to ND through the reorientation of \({{10}\bar{1}{{2}}}\) secondary twin. Both Schmid factor criterion and displacement gradient accommodation are considered to predict the twin-induced texture evolution during TD tension. Kink bands formed by the accumulation of basal 〈a〉 dislocations are also observed in the deformed grain. The activation of other slip systems can deviate the rotation axis and reduce the rotation angle of kink boundary. Besides, the kink boundary with high basal dislocation density obviously hinders the twin transmission and simultaneously can be taken as a preferential nucleation site for \({{11}\bar{2}{{2}}}\) twin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Ishiki, T. Kuwabara, Y. Hayashida, Int. J. Mater. Form. 4, 193–204 (2011)

    Article  Google Scholar 

  2. Z. Zeng, Y. Zhang, S. Jonsson, Mater. Des. 30, 3105–3111 (2009)

    Article  CAS  Google Scholar 

  3. Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang, Mater. Sci. Eng. A 398, 209–219 (2005)

    Article  Google Scholar 

  4. N.P. Gurao, R. Kapoor, S. Suwas, Acta Mater. 59, 3431–3446 (2011)

    Article  CAS  Google Scholar 

  5. M. Battaini, E.V. Pereloma, C.H.J. Davies, Metall. Mater. Trans. A 38A, 276–285 (2007)

    Article  CAS  Google Scholar 

  6. S. Panda, S.K. Sahoo, A. Dash, M. Bagwan, G. Kumar, S.C. Mishra, S. Suwas, Mater. Charact. 98, 93–101 (2014)

    Article  CAS  Google Scholar 

  7. X. Huang, K. Suzuki, Y. Chino, Scripta Mater. 63, 473–476 (2010)

    Article  CAS  Google Scholar 

  8. M.H. Yoo, Metall. Trans. A 12, 409–418 (1981)

    Article  CAS  Google Scholar 

  9. Y. Ren, X. Zhang, T. Xia, Q. Sun, Q. Liu, Mater. Des. 126, 123–134 (2017)

    Article  CAS  Google Scholar 

  10. J.W. Won, D. Kim, S.G. Hong, C.S. Lee, J. Alloys Compd. 683, 92–99 (2016)

    Article  CAS  Google Scholar 

  11. S. Wang, C. Schuman, L. Bao, J.S. Lecomte, Y. Zhang, J.M. Raulot, M.J. Philippe, X. Zhao, C. Esling, Acta Mater. 60, 3912–3919 (2012)

    Article  CAS  Google Scholar 

  12. S. Xu, M. Gong, Y. Jiang, C. Schuman, J.S. Lecomte, J. Wang, Acta Mater. 152, 58–76 (2018)

    Article  CAS  Google Scholar 

  13. J.B. Hess, C.S. Barrett, JOM 1, 599–606 (1949)

    Article  CAS  Google Scholar 

  14. K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano, Y. Kawamura, Int. J. Plast. 77, 174–191 (2016)

    Article  CAS  Google Scholar 

  15. T. Matsumoto, M. Yamasaki, K. Hagihara, Y. Kawamura, Acta Mater. 151, 112–124 (2018)

    Article  CAS  Google Scholar 

  16. S. Yamasaki, T. Tokuzumi, W. Li, M. Mitsuhara, K. Hagihara, T. Fujii, and H. Nakashima: Acta Mater.

  17. S. Jin, K. Marthinsen, Y. Li, Acta Mater. 120, 403–414 (2016)

    Article  CAS  Google Scholar 

  18. M. Yamasaki, K. Hagihara, S.I. Inoue, J.P. Hadorn, Y. Kawamura, Acta Mater. 61, 2065–2076 (2013)

    Article  CAS  Google Scholar 

  19. N.J. Lane, S.I. Simak, A.S. Mikhaylushkin, I.A. Abrikosov, L. Hultman, M.W. Barsoum, Phys. Rev. B 84, 184101 (2011)

    Article  Google Scholar 

  20. Y. Zheng, W. Zeng, Y. Wang, S. Zhang, Mater. Sci. Eng. A 702, 218–224 (2017)

    Article  CAS  Google Scholar 

  21. S. Wronski, M. Jedrychowski, J. Tarasiuk, B. Bacroix, Mater. Sci. Eng. A 692, 113–126 (2017)

    Article  CAS  Google Scholar 

  22. S. Wang, Y. Zhang, C. Schuman, J.S. Lecomte, X. Zhao, L. Zuo, M.J. Philippe, C. Esling, Acta Mater. 82, 424–436 (2015)

    Article  CAS  Google Scholar 

  23. B. Beausir and J.-J. Fundenberger, Analysis Tools for Electron and X-Ray Diffraction (Université de Lorraine - Metz, ATEX - Software, 2017).

    Google Scholar 

  24. W. Pantleon, Scripta Mater. 58, 994–997 (2008)

    Article  CAS  Google Scholar 

  25. É. Martin, L. Capolungo, L. Jiang, J.J. Jonas, Acta Mater. 58, 3970–3983 (2010)

    Article  CAS  Google Scholar 

  26. Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41A, 3473–3487 (2010)

    Article  Google Scholar 

  27. S. Xu, L.S. Toth, C. Schuman, J.-S. Lecomte, M.R. Barnett, Acta Mater. 124, 59–70 (2017)

    Article  CAS  Google Scholar 

  28. T. Hama, A. Kobuki, H. Takuda, Int. J. Plast. 91, 77–108 (2017)

    Article  CAS  Google Scholar 

  29. J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, Ė Martin, Acta Mater. 59, 2046–2056 (2011)

    Article  CAS  Google Scholar 

  30. S. Xu, M. Gong, C. Schuman, J.-S. Lecomte, X. Xie, J. Wang, Acta Mater. 132, 57–68 (2017)

    Article  CAS  Google Scholar 

  31. A. Ghaderi, M.R. Barnett, Acta Mater. 59, 7824–7839 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author Qian Wang is grateful to the China Scholarship Council for the support of her PhD study in France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Sébastien Lecomte or Christophe Schuman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 28, 2020; accepted March 5, 2021.

Appendix

Appendix

To investigate the accommodation mechanism, the displacement gradient tensor of twinning \({{D}}^{t}\) is always transformed into other coordinate system, such as crystal system, sample system, or another twinning system. First, we need to build the coordinate rotation matrix from twinning system to crystal system.

$${{R}}_{\text{tg}}{ = }\left[\begin{array}{ccc}{{n}}_{1} \, & {{n}}_{2}& {{n}}_{3}\\ {{p}}_{1}& {{p}}_{2}& {{p}}_{3}\\ {{m}}_{1}& {{m}}_{2}& {{m}}_{3}\end{array}\right]$$
(A1)

where n, m, and p represent the twinning shear direction (n), normal of twin habit plane (m), and normal of shear plane (p). The coordinate rotation matrix sample system to crystal system is as follows:

$${{R}}_{\text{gs}}={{R}}_{{\varphi}_{2}}{{\cdot R}}_{\phi}{\cdot }{{R}}_{{\varphi}_{1}}$$
(A2)
$${{R}}_{{\varphi}_{1}}=\left[\begin{array}{ccc}{\text{cos}}{\varphi}_{1}& {{\sin}}{\varphi}_{1}& {0}\\ {-\sin}{\varphi}_{1}& {{\cos}}{\varphi}_{1}& {0}\\ {0}& {0}& {1}\end{array}\right]$$
(A3)
$${{R}}_{ \phi }=\left[\begin{array}{ccc}{1}& {0}& {0}\\ {0}& {{\cos}}{ \phi }& {{\sin}}{ \phi }\\ {0}& {-\sin}{ \phi }& {{\cos}}{ \phi }\end{array}\right]$$
(A4)
$${{R}}_{{\varphi}_{2}}=\left[\begin{array}{ccc}{{\cos}}{\varphi}_{2}& {{\sin}}{\varphi}_{2}& {0}\\ {-\sin}{\varphi}_{2}& {{\cos}}{\varphi}_{2}& {0}\\ {0}& {0}& {1}\end{array}\right]$$
(A5)

where φ1, Φ, and φ2 are Euler angles from HKL system. The displacement gradient tensor of Twin 1 (\({{D}}^{{t1}}\)) is transformed from Twin 1 frame (\({\mathbf{D}}_{{t1}}^{{t1}}\)) to crystal frame of Grain 1 (\({\mathbf{D}}_{{g1}}^{{t1}}\)) as follows:

$${{\mathbf{D}}_{{g1}}^{{t1}}= { R} }_{{t1g1}}^{-1}\cdot {\mathbf{D}}_{{t1}}^{{t1}} \, \cdot {{R}}_{{t1g1}}$$
(A6)

The transformation of \({{D}}^{{t1}}\) from Grain 1 frame (\({\mathbf{D}}_{{{g}}{1}}^{{t1}}\)) to sample frame (\({\mathbf{D}}_{{s}}^{{t1}}\)) to Grain 2 frame (\({\mathbf{D}}_{{g2}}^{{t1}}\)) is:

$${{D}}_{{g2}}^{{t1}}= {{R}}_{{{g}}{2}{{s}}}{\cdot }{{D}}_{{s}}^{{t1}}{\cdot }{{R}}_{{{g}}{2}{{s}}}^{-1}{ = }{{R}}_{{{g}}{2}{{s}}}{\cdot }{{R}}_{{{g}}{1}{{s}}}^{-1}{\cdot }{{D}}_{{{g}}{1}}^{{t1}}{\cdot }{{R}}_{{{g}}{1}{{s}}}{\cdot }{{R}}_{{{g}}{2}{{s}}}^{-1}$$
(A7)

The transformation of \({{D}}^{{t1}}\) from Grain 2 frame (\({\mathbf{D}}_{{g2}}^{{t1}}\)) to the frame (\({\mathbf{D}}_{{t2}}^{{t1}}\)) of Twin 2 in Grain 2 is:

$${\mathbf{D}}_{{t2}}^{{t1}} = {{R}}_{{t2g2}}\cdot {\mathbf{D}}_{{g2}}^{{t1}}\cdot {{R}}_{{t2g2}}^{-1}$$
(A8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, S., Moll, P. et al. Microstructure Evolution of Commercial Pure Titanium During Interrupted In Situ Tensile Test. Metall Mater Trans A 52, 2477–2488 (2021). https://doi.org/10.1007/s11661-021-06237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06237-1

Navigation